MA109 Tutorial 7 Sarthak Mittal

Solutions to Tutorial Sheet 7

1. Let $F(x, y, z) = x^2 + 2xy - y^2 + z^2$. Find the gradient of F at (1, -1, 3) and the equations of the tangent plane and the normal line to the surface F(x, y, z) = 7 at (1, -1, 3).

Solution.
$$(\nabla F)(1, -1, 3) = \left(\frac{\partial F}{\partial x}(1, -1, 3), \frac{\partial F}{\partial y}(1, -1, 3), \frac{\partial F}{\partial z}(1, -1, 3)\right) = 4\mathbf{j} + 6\mathbf{k}.$$

The tangent plane to the surface F(x, y, z) = 7 at the point (1, -1, 3) is given by,

$$0 \times (x-1) + 4 \times (y+1) + 6 \times (z-3) = 0 \implies 2y + 3z = 7.$$

The normal line to the surface F(x, y, z) = 7 at the point (1, -1, 3) is given by x = 1, 3y - 2z + 9 = 0.

2. Find $D_{\vec{u}}F(2,2,1)$, where F(x,y,z)=3x-5y+2z, and \vec{u} is the unit vector in the direction of the outward normal to the sphere $x^2+y^2+z^2=9$ at (2,2,1).

Solution.
$$\vec{u} = \frac{(2,2,1)}{\sqrt{2^2 + 2^2 + 1^2}} = \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right) = \frac{2}{3}(\mathbf{i} + \mathbf{j})\frac{1}{3}\mathbf{k}$$
 and $(\nabla F)(2,2,1) = 3\mathbf{i} - 5\mathbf{j} + 2\mathbf{k}$. Therefore, $D_{\vec{u}}F(2,2,1) = (\nabla F)(2,2,1) \cdot \vec{u} = \frac{6}{3} - \frac{10}{3} + \frac{2}{3} = -\frac{2}{3}$.

3. Given $\sin(x+y) + \sin(y+z) = 1$, find $\frac{\partial^2 z}{\partial x \partial y}$, provided $\cos(y+z) \neq 0$.

Solution. Given that $\sin(x+y) + \sin(y+z) = 1$ (with $\cos(y+z) \neq 0$).

You may assume that z is a sufficiently smooth function of x and y.

Differentiating w.r.t. x while keeping y fixed, we get,

$$\cos(x+y) + \cos(y+z)\frac{\partial z}{\partial x} = 0.$$
(*)

Similarly, differentiating w.r.t. y while keeping x fixed, we get,

$$\cos(x+y) + \cos(y+z)\left(1 + \frac{\partial z}{\partial y}\right) = 0.$$
(**)

Differentiating (*) w.r.t y we have,

$$-\sin(x+y) - \sin(y+z)\left(1 + \frac{\partial z}{\partial y}\right)\frac{\partial z}{\partial x} + \cos(y+z)\frac{\partial^2 z}{\partial x \partial y} = 0.$$

Thus, using (*) and (**), we have,

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{1}{\cos(y+z)} \left[\sin(x+y) + \sin(y+z) \left(1 + \frac{\partial z}{\partial y} \right) \frac{\partial z}{\partial x} \right]$$

$$= \frac{1}{\cos(y+z)} \left[\sin(x+y) + \sin(y+z) \left(-\frac{\cos(x+y)}{\cos(y+z)} \right) \left(-\frac{\cos(x+y)}{\cos(y+z)} \right) \right]$$

$$= \frac{\sin(x+y)}{\cos(y+z)} + \tan(y+z) \left(\frac{\cos^2(x+y)}{\cos^2(y+z)} \right)$$

MA109 Tutorial 7 Sarthak Mittal

4. If
$$f(0,0) = 0$$
 and

$$f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$$
 for $(x,y) \neq (0,0)$,

show that both f_{xy} and f_{yx} exist at (0,0), but they are not equal. Are f_{xy} and f_{yx} continuous at (0,0)?

Solution. We have,

$$f_{xy}(0,0) = \lim_{k \to 0} \frac{f_x(0,k) - f_x(0,0)}{k}$$

where (noting that $k \neq 0$),

$$f_x(0,k) = \lim_{h \to 0} \frac{f(h,k) - f(0,k)}{h} = -k \text{ and } f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0.$$

Therefore,

$$f_{xy}(0,0) = \lim_{k\to 0} \frac{-k-0}{k} = -1$$
; similarly $f_{yx}(0,0) = 1$.

Thus,

$$f_{xy}(0,0) \neq f_{yx}(0,0).$$

By directly computing f_{xy} , f_{yx} for $(x,y) \neq (0,0)$, one observes that these are not continuous at (0,0).

5. Show that the following functions have local minima at the indicated points:

(i)
$$f(x,y) = x^4 + y^4 + 4x - 32y - 7$$
, $(x_0, y_0) = (-1, 2)$

Solution.
$$f_x(-1,2) = 0 = f_y(-1,2), H_f(-1,2) = \begin{bmatrix} 12 & 0 \\ 0 & 48 \end{bmatrix}$$

 $D(-1,2) = 12 \times 48 - 0^2 > 0, \ f_{xx}(-1,2) = 12 > 0 \implies (-1,2) \text{ is a point of local minimum of } f.$

(ii)
$$f(x,y) = x^3 + 3x^2 - 2xy + 5y^2 - 4y^3$$
, $(x_0, y_0) = (0,0)$

Solution.
$$f_x(0,0) = 0 = f_y(0,0), H_f(0,0) = \begin{bmatrix} 6 & -2 \\ -2 & 10 \end{bmatrix}$$

 $D(0,0) = 6 \times 10 - (-2)^2 > 0$, $f_{xx}(0,0) = 6 > 0 \implies (0,0)$ is a point of local minimum of f.

6. Analyze the following functions for local maxima, local minima and saddle points:

(i)
$$f(x,y) = (x^2 - y^2)e^{-(x^2 + y^2)/2}$$

Solution.
$$f_x = e^{-(x^2+y^2)/2}(2x-x^3+xy^2), f_y = e^{-(x^2+y^2)/2}(-2y+y^3-x^2y).$$

Critical points are (0,0), $(\pm\sqrt{2},0)$, $(0,\pm\sqrt{2})$.

$$H_f(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} \implies (0,0)$$
 is a saddle point of f .

$$H_f(\pm\sqrt{2},0) = \begin{bmatrix} -4/e & 0\\ 0 & -4/e \end{bmatrix} \implies (\pm\sqrt{2},0)$$
 are points of local maximum of f .

$$H_f(0,\pm\sqrt{2}) = \begin{bmatrix} 4/e & 0 \\ 0 & 4/e \end{bmatrix} \implies (0,\pm\sqrt{2})$$
 are points of local minimum of f .

MA109 Tutorial 7 Sarthak Mittal

(ii)
$$f(x,y) = x^3 - 3xy^2$$

Solution. $f_x = 3x^2 - 3y^2$ and $f_y = -6xy$ imply that (0,0) is the only critical point of f. Now,

$$H_f(0,0) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Thus the standard derivative test fails. However, $f(\pm \epsilon, 0) = \pm \epsilon^3$ for any ϵ so that (0,0) is a saddle point of f.

7. Find the absolute maximum and the absolute minimum of

$$f(x,y) = (x^2 - 4x)\cos y$$
 for $1 \le x \le 3, -\pi/4 \le y \le \pi/4$.

Solution. From $f(x,y) = (x^2 - 4x) \cos y \ (1 \le x \le 3, -\pi/4 \le y \le \pi/4)$, we have,

$$f_x = (2x - 4)\cos y$$
 and $f_y = -(x^2 - 4x)\sin y$.

Thus the only critical point of f is P=(2,0). Note that f(P)=-4. Next, $g_{\pm}(x)\equiv f(x,\pm\frac{\pi}{4})=$

$$\frac{(x^2-4x)}{\sqrt{2}}$$
 for $1 \le x \le 3$ has $x=2$ as the only critical point so that we consider $P_{\pm}=(2,\pm\frac{\pi}{4})$. Note

that
$$f(P_{\pm}) = \frac{-4}{\sqrt{2}}$$
. We also need to check $g_{\pm}(1) = f(1, \pm \frac{\pi}{4}) \ (\equiv f(Q_{\pm}))$ and $g_{\pm}(3) = f(3, \pm \frac{\pi}{4}) \ (\equiv f(S_{\pm}))$. Note that $f(Q_{\pm}) = \frac{-3}{\sqrt{2}}$ and $f(S_{\pm}) = -\frac{-3}{\sqrt{2}}$.

Next, consider $h(y) \equiv f(1,y) = -3\cos y$ for $-\frac{\pi}{4} \le y \le \frac{\pi}{4}$. The only critical point of h is y = 0. Note that $h(0) = f(1,0) \ (\equiv f(M)) = -3$. $(h(\pm \frac{\pi}{4})$ is just $f(Q_{\pm})$).

Finally, consider $k(y) = f(3, y) = -3\cos y$ for $-\frac{\pi}{4} \le y \le \frac{\pi}{4}$. The only critical point of k is y = 0.

Note that
$$k(0) = f(3,0) \ (\equiv f(T)) = -3. \ (k(\pm \frac{\pi}{4}) \text{ is just } f(S_{\pm})).$$

Summarizing, we have the following table:

Points
$$|P_{+}|$$
 $|P_{-}|$ $|Q_{+}|$ $|Q_{-}|$ $|S_{+}|$ $|S_{-}|$ $|T|$ $|P|$ $|M|$
Values $|-\frac{4}{\sqrt{2}}|$ $|-\frac{4}{\sqrt{2}}|$ $|-\frac{3}{\sqrt{2}}|$ $|-\frac{3}{\sqrt{2}}|$ $|-\frac{3}{\sqrt{2}}|$ $|-3|$ $|-3|$ $|-3|$ $|-3|$ $|-3|$

By inspection one finds that $f_{min} = -4$ attained at P = (2,0) and $f_{max} = \frac{-3}{\sqrt{2}}$ at $Q_{\pm} = (1, \pm \frac{\pi}{4})$ and at $S_{\pm} = (3, \pm \frac{\pi}{4})$.