MA109 Tutorial 5 Sarthak Mittal

Solutions to Tutorial Sheet 5

1. Find the area of the region bounded by the given curves in each of the following cases:

(i) ve+y=1,r=0andy =0.
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Solution. ydr = (1+x72\/§)dx:1+572><§:6.
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2. Let f(z) = 2 — 2% and g(z) = ax. Determine a so that the region above the graph of g and below the

graph of f has area g
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Solution.

1—a
/ (1-a)z—2?)dx
0

a=—2,4.

1—a
/ (17 — 2% - a:c) dzx
0

3. Find the area of the region inside the circle r = 6a cos 6 and outside the cardioid r = 2a(1 + cos§).
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Solution. Required area = 2 X / 5(7"% —7r3)df = 4a2/ (8cos® 0 — 2cos — 1)df = 4ma®.
0 0

5. For the following curve, find the arc length as well as the area of the surface generated by revolving it
about the line y = —1:
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Ldy 1 1 dy 1, 1
Solutlon.%:x +<_4x2 = /1 4+ x4+ —5= x+@.

Therefore, the arc length is given by,
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The surface area is,
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7. Find the volume common to the cylinders 2 + 32 = a? and y? + 2% = a2
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Solution. In the first octant, the sections perpendicular to the y-axis are squares with

OSIS Va‘2_y270§2§ Va/2_y270§y§a~

Since the squares have sides of length \/a? — 42, the area of the cross-section at y is A(y) = 4(a® — y?).

Thus the required volume is

@ @ 16a®
/ A(y)dy = 8/ (a® = y?)dy = 5
—a 0

8. A fixed line L in 3-space and a square of side r in a plane perpendicular to L are given. One vertex
of the square is on L. As this vertex moves a distance h along L, the square turns through a full

revolution with L as the axis. Find the volume of the solid generated by this motion.
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Solution. Let the line be along z-axis, 0 < z < h. For any fixed z, the section is a square of area 2.

h
Hence the required volume is / r2dz = r2h.
0

10. A round hole of radius r = v/3 cm is bored through the center of a solid ball of radius R = 2 cm. Find

the volume cut out.
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Solution. Required volume = Volume of the sphere — Volume generated by revolving the shaded
region around the y-axis.

Washer Method: Integrating z as a function of y (using horizontal solid circular washers)
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Shell Method: Integrating y as a function of x (using vertical hollow cylindrical shells)
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Credits: MA105 Tutorial Solutions (2014)

Page 4



