
MA109 Tutorial 4 Sarthak Mittal

Solutions to Tutorial Sheet 4
5. Let f(x) = 1 if x ∈ [0, 1] and f(x) = 2 if x ∈ (1, 2]. Show from the first principles that f is Riemann

integrable on [0, 2] and find

ˆ 2

0

f(x)dx.

Solution. The given function is integrable as it is monotone. Let Pn be the partition of [0, 2] into

2× 2n equal parts. Then U(Pn, f) = 3 and

L(Pn, f) = 1 + 1× 1

2n
+ 2× 2n − 1

2n
→ 3

as n → ∞. Thus,

ˆ 2

0

f(x)dx = 3.

6. (a) Let f : [a, b] → R be Riemann integrable and f(x) ≥ 0 for all x ∈ [a, b]. Show that

ˆ b

a

f(x)dx ≥ 0.

Further, if f is continuous and

ˆ b

a

f(x)dx = 0, show that f(x) = 0 for all x ∈ [a, b].

Solution. f(x) ≥ 0 =⇒ U(P, f) ≥ 0, L(P, f) ≥ 0 =⇒
ˆ b

a

f(x)dx ≥ 0. Suppose, moreover, f is

continuous and

ˆ b

a

f(x)dx = 0. Assume f(c) > 0 for some c ∈ [a, b]. Then f(x) >
f(c)

2
in a δ-nbhd of

c for some δ > 0. This implies that

U(P, f) > δ × f(c)

2

for any partition P , and hence,

ˆ b

a

f(x)dx ≥ δ
f(c)

2
> 0, a contradiction.

(b) Give an example of a Riemann integrable function on [a, b] such that f(x) ≥ 0 for all x ∈ [a, b] and
ˆ b

a

f(x)dx = 0, but f(x) ̸= 0 for some x ∈ [a, b].

Solution. On [0, 1] take

f(x) =

{
0 x ̸= 0

1 x = 0

7. Evaluate lim
n→∞

Sn by showing that Sn is an approximate Riemann sum for a

suitable function over a suitable interval:

(i) Sn =
1

n5/2

n∑
i=1

i3/2

Solution. Sn =
1

n

n∑
i=1

(
i

n

)3/2

→
ˆ 1

0

x3/2dx =
2

5
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(iii) Sn =

n∑
i=1

1√
in+ n2

Solution. Sn =
1

n

n∑
i=1

1√
1 + i

n

→
ˆ 1

0

dx√
1 + x

= 2(
√
2− 1)

(iv) Sn =
1

n

n∑
i=1

cos
iπ

n

Solution. Sn =
1

n

n∑
i=1

cos
iπ

n
→
ˆ 1

0

cosπx = 0

(v) Sn =
1

n

{
n∑

i=1

(
i

n

)
+

2n∑
i=n+1

(
i

n

)3/2

+

3n∑
i=2n+1

(
i

n

)2
}

Solution. Sn →
ˆ 1

0

xdx+

ˆ 2

1

x3/2dx+

ˆ 3

2

x2dx =
1

2
+

2

5
(4
√
2− 1) +

19

3

8. (b) Compute
dF

dx
, if for x ∈ R:

(i) F (x) =

ˆ 2x

1

cos(t2)dt

Solution. F ′(x) = cos((2x)2)× 2 = 2 cos(4x2)

(ii) F (x) =

ˆ x2

0

cos(t)dt

Solution. F ′(x) = cos(x2)× 2x = 2x cos(x2)

9. Let p be a real number and let f be a continuous function on R that satisfies the equation f(x+p) = f(x)

for all x ∈ R. Show that the integral

ˆ a+p

a

f(t)dt has the same value for every real number a.

(Hint: Consider F (a) =

ˆ a+p

a

f(t)dt, a ∈ R).

Solution. Define F (x) =

ˆ x+p

x

f(t)dt, x ∈ R. Then F ′(x) = f(x+ p)− f(x) = 0 for every x.

10. Let f : R → R be continuous and λ ∈ R, λ ̸= 0. For x ∈ R, let

g(x) =
1

λ

ˆ x

0

f(t) sinλ(x− t)dt.

Show that g′′(x) + λ2g(x) = f(x) for all x ∈ R and g(0) = g′(0) = 0.

Solution. Write sinλ(x− t) as sin(λx) cos(λt)− cos(λx) sin(λt) in the integrand, take terms in x

outside the integral, evaluate g′(x) and g′′(x), and simplify to show LHS = RHS. From the expressions

for g(x) and g′(x) it should be clear that g(0) = g′(0) = 0.
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Alternate. The problem can also be solved by appealing to the following theorem:

Theorem A. Let h(t, x) and
∂h

∂x
(t, x) be continuous functions of t and x on the rectangle [a, b]× [c, d].

Let u(x) and v(x) be differentiable functions of x on [c, d] such that, for each x ∈ [c, d], the points

(u(x), x) and (v(x), x) belong to [a, b]× [c, d]. Then

d

dx

ˆ v(x)

u(x)

h(t, x)dt =

ˆ v(x)

u(x)

∂h

∂x
(t, x)dt− u′(x)h(u(x), x) + v′(x)h(v(x), x).

Consider now

g(x) =
1

λ

ˆ x

0

f(t) sinλ(x− t)dt.

Let h(t, x) =
1

λ
f(t) sinλ(x− t), u(x) = 0 and v(x) = x. Then it follows from Theorem A that

g′(x) =

ˆ x

0

f(t) cosλ(x− t)dt.

Again, applying Theorem A, we have

g′′(x) = −λ

ˆ x

0

f(t) sinλ(x− t) + f(x).

Thus g′′(x) + λ2g(x) = f(x). g(0) = g′(0) = 0 is obvious from the expressions for g(x) and g′(x).
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