
MA109 Tutorial 2 Sarthak Mittal

Solutions to Tutorial Sheet 2
2. Let f : R → R be such that lim

x→α
f(x) exists for α ∈ R. Show that

lim
h→0

[f(α+ h)− f(α− h)] = 0.

Analyse the converse.

Solution. Suppose lim
x→α

f(x) = L. Then lim
h→0

f(α+ h) = L, and since

|f(α+ h)− f(α− h)| ≤ |f(α+ h)− L|+ |f(α− h)− L|

it follows that
lim
h→0

|f(α+ h)− f(α− h)| = 0.

The converse is false. For a counter-example, consider α = 0 and

f(x) =

{
1 x = 0
1
|x| x ̸= 0

3. Discuss the continuity of the following functions:

(i) f(x) = sin 1
x , if x ̸= 0 and f(0) = 0

Solution. Continuous everywhere except at x = 0. To see that f is not continuous at x = 0, consider

the sequences {xn}n≥1, {yn}n≥1 where

xn :=
1

nπ
and yn :=

1

2nπ + π
2

.

Note that both xn, yn → 0, but f(xn) → 0 and |f(yn)| → 1.

Since there exists a finite (equal to 1 in absolute value) between two infinitesimally close values of x,
the function f is discontinuous at x = 0. The value that the function converges to should be exactly
the same for any choice of sequence converging to the point of concern (here x = 0).

(ii) f(x) = x sin 1
x , if x ̸= 0 and f(0) = 0

Solution. Continuous everywhere. For proving the continuity of f at x = 0, note that |f(x)| ≤ |x|,

and f(0) = 0.

4. Let f : R → R satisfy f(x+ y) = f(x) + f(y) for all x, y ∈ R. If f is continuous at 0, show that f is

continuous at every c ∈ R.

Optional. Show that the function f satisfies f(kx) = kf(x), for all k ∈ R.

Solution. Taking x = y = 0, we get f(0 + 0) = 2f(0) so that f(0) = 0. By the assumption of the

continuity of f at 0, lim
x→0

f(x) = 0. Thus,

lim
h→0

f(c+ h) = lim
h→0

[f(c) + f(h)] = f(c)

showing that f is continuous at x = c.

Hint. For the optional part, first verify the equality for all k ∈ Q and then use the continuity of f to

establish it for all k ∈ R.
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5. Let f(x) = x2 sin(1/x) for x ̸= 0 and f(0) = 0. Show that f is differentiable on R. Is f ′ a continuous

function?

Solution. Clearly, f is differentiable for all x ̸= 0 and the derivative is

f ′(x) = 2x sin

(
1

x

)
− cos

(
1

x

)
, x ̸= 0.

Also,

f ′(0) = lim
h→0

h2 sin
(
1
h

)
− 0

h
= 0.

Clearly, f ′ is continuous at any x ̸= 0. However lim
x→0

f ′(x) does not exist. Indeed, for any δ > 0, we

can choose n ∈ N such that x := 1/nπ, y := 1/(n+ 1)π are in (−δ, δ), but |f ′(x)− f ′(y)| = 2.

7. If f : (a, b) → R is differentiable at c ∈ (a, b), then show that

lim
h→0+

f(c+ h)− f(c− h)

2h

exists and equals f ′(c). Is the converse true? [Hint: Consider f(x) = |x|.]

Solution. For the first part, observe that

lim
h→0+

f(c+ h)− f(c− h)

2h
= lim

h→0+

1

2

[
f(c+ h)− f(c)

h
+

f(c− h)− f(c)

−h

]
=

1

2
[f ′(c) + f ′(c)] = f ′(c)

The converse is false. Consider, for example, f(x) = |x| and c = 0.

9. Using the theorem on derivatives of inverse function, compute the derivative of

(i) cos−1x, −1 < x < 1

Solution. Let f(x) = cos(x). Then f ′(x) = − sin(x) ̸= 0 for x ∈ (0, π).

Thus g(y) = f−1(y) = cos−1(y), −1 < y < 1 is differentiable and

g′(y) =
1

f ′(x)
where x is such that f(x) = y.

Therefore,

g′(y) =
−1

sin(x)
=

−1√
1− cos2(x)

=
−1√
1− y2

.

(ii) cosec−1x, |x| > 1

Solution. Note that

cosec−1(x) = sin−1 1

x
for |x| > 1

Since
d

dx
sin−1(x) =

1√
1− x2

for |x| < 1,
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one has, by the chain rule

d

dx
cosec−1(x) =

1√
1− 1

x2

(
−1

x2

)
, |x| > 1.

10. Compute dy
dx , given

y = f

(
2x− 1

x+ 1

)
and f ′(x) = sin(x2)

Solution. By the chain rule,

dy

dx
= f ′

(
2x− 1

x+ 1

)
d

dx

(
2x− 1

x+ 1

)
= sin

(
2x− 1

x+ 1

)2 [
3

(x+ 1)2

]
=

3

(x+ 1)2
sin

(
2x− 1

x+ 1

)2

11. Construct an example of a function f : R → R which is continuous every where and is differentiable

everywhere except at 2 points.

Solution. Consider f(x); = |x|+ |1− x| for x ∈ R.

12. Let f(x) =

{
1 x ∈ Q
0 x /∈ Q

Show that f is discontinuous at every c ∈ R.

Solution. For c ∈ R, select a sequence {an}n≥1 of rational numbers and a sequence {bn}n≥1 of

irrational numbers, both converging to c. Then {f(an)}n≥1 converges to 1 while {f(bn)}n≥1 converges

to 0, showing that limit of f at c does not exist.

15. Let f : (a, b) → R and c ∈ (a, b). Show that the following are equivalent:

(i) f is differentiable at c

(ii) There exists δ > 0 and a function ϵ1 : (−δ, δ) → R such that lim
h→0

ϵ1(h) = 0 and

f(c+ h) = f(c) + αh+ hϵ1(h) for all h ∈ (−δ, δ)

(iii) There exists α ∈ R such that

lim
h→0

(
|f(c+ h)− f(c)− αh|

|h|

)
= 0

Solution. To prove equivalence, we need to prove (i) ⇐⇒ (ii) ⇐⇒ (iii). We can prove it in a cyclic

manner, as (i) =⇒ (ii), (ii) =⇒ (iii) and (iii) =⇒ (i).
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(i) =⇒ (ii): Choose δ > 0 such that (c− δ, c+ δ) ⊂ (a, b). Take α = f ′(c) and

ϵ1(h) =

{
f(c+h)−f(c)−αh

h h ̸= 0

0 h = 0

(ii) =⇒ (iii): lim
h→0

|f(c+h)−f(c)−αh|
|h| = lim

h→0
|ϵ1(h)| = 0

(iii) =⇒ (i): lim
h→0

∣∣∣ f(c+h)−f(c)
h − α

∣∣∣ = 0 =⇒ lim
h→0

f(c+h)−f(c)
h exists and is equal to α.
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