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Solutions to Tutorial Sheet 1
1. Using (ϵ− n0) definition, prove the following:

(iii) lim
n→∞

n2/3sin(n!)
n+1 = 0

Solution. For a given ϵ > 0, we have to find n0 ∈ N such that |an| < ϵ for all n ≥ n0. Note that

|an| <
n2/3

n+ 1
<

1

n1/3

Hence, select n0 ∈ N such that n0 > 1
ϵ3 . (Think about why is this always possible.)

(iv) lim
n→∞

(
n

n+1 − n+1
n

)
= 0

Solution. Following approach similar to previous part, note that

|an| =
1

n

(
2− 1

n+ 1

)
<

2

n

Hence, select n0 ∈ N such that n0 > 2
ϵ . (Think again. Same logic.)

2. Show that the following limits exist and find them:

(i) lim
n→∞

(
n

n2+1 + n
n2+2 + · · ·+ n

n2+n

)
Solution.

n2

n2 + n
≤ an ≤ n2

n2 + 1
=⇒ lim

n→∞
an = 1

(iv) lim
n→∞

(n)1/n

Solution. Let n1/n = 1 + hn. For n ≥ 2, we have

n = (1+hn)
n ≥ 1+nhn+

(
n

2

)
h2
n >

(
n

2

)
h2
n =⇒ 0 < h2

n <
2

n− 1
=⇒ lim

n→∞
hn = 0 =⇒ lim

n→∞
an = 1

(v) lim
n→∞

(
cosπ

√
n

n2

)
Solution.

0 <

∣∣∣∣cosπ√n

n2

∣∣∣∣ ≤ 1

n2
=⇒ lim

n→∞
an = 0

(vi) lim
n→∞

(
√
n(
√
n+ 1−

√
n))

Solution.
√
n(
√
n+ 1−

√
n) =

√
n√

n+ 1 +
√
n
=

1

1 +
√

1 + 1
n

=⇒ lim
n→∞

an =
1

2

3. Show that the following sequences are not convergent:

(i) { n2

n+1}n≥1

Solution.
n2

n+ 1
= (n− 1) +

1

n+ 1
is not convergent since lim

n→∞

1

n+ 1
= 0
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4. Determine whether the sequences are increasing or decreasing:

(i) { n
n2+1}n≥1

Solution. Decreasing, since an = 1
n+ 1

n

and {n+ 1
n}n≥1 is increasing.

(iii) { 1−n
n2 }n≥2

Solution. Increasing, as an+1 − an = n(n−1)−1
n2(n+1)2 > 0 for n ≥ 2.

5. Prove that the following sequences are convergent by showing that they are monotone and bounded.

Also find their limits:

(ii) a1 =
√
2, an+1 =

√
2 + an ∀n ≥ 1

Solution. By induction,
√
2 ≤ an < 2 ∀n. Hence, an+1 − an = (2−an)(1+an)

an+
√
2+an

> 0 ∀n. Thus {an}n≥2 is

monotonically increasing and bounded above by 2. So lim
n→∞

an = a (say) exists, and
√
2 ≤ a < 2. Also,

a =
√
2 + a, id est, a2 = a+ 2 =⇒ a = −1, 2. Hence lim

n→∞
an = 2.

7. If lim
n→∞

an = L ̸= 0, show that there exists n0 ∈ N such that

|an| ≥
|L|
2

for all n ≥ n0.

Solution. Take ϵ = |L|/2. Then ϵ > 0 and since an → L, there exists n0 ∈ N such that |an − L| < ϵ

∀n ≥ n0. Now ||an| − |L|| ≤ |an − L| and hence |an| > |L| − ϵ = |L|/2 ∀n ≥ n0.

8. If an ≥ 0 and lim
n→∞

an = 0, show that lim
n→∞

a
1/2
n = 0.

Optional: State and prove a corresponding result if an → L > 0.

Solution. Given ϵ > 0, there exists n0 ∈ N such that |an| < ϵ2 ∀n ≥ n0. Hence |√an| < ϵ ∀n ≥ n0.

Hint. For optional part, try using the fact that an will be bounded and an−L = (
√
an−

√
L)(

√
an+

√
L).

10. Show that a sequence {an}n≥1 is convergent if and only if both the sub-sequences {a2n}n≥1 and

{a2n+1}n≥1 are convergent to the same limit.

Solution. The implication “ =⇒ ” is obvious. For the converse, suppose both {a2n}n≥1 and

{a2n+1}n≥1 converge to ℓ. Let ϵ > 0 be given. Choose n1, n2 ∈ N such that |a2n− ℓ| < ϵ for all n ≥ n1

and |a2n+1 − ℓ| < ϵ for all n ≥ n2. Let n0 = max{n1, n2}. Then |an − ℓ| < ϵ for all n ≥ 2n0 + 1.
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