
MA109 Tutorial 1 Sarthak Mittal

Solutions to Tutorial Sheet 1
1. Using (ϵ− n0) definition, prove the following:

(iii) lim
n→∞

n2/3sin(n!)
n+1 = 0

Solution. For a given ϵ > 0, we have to find n0 ∈ N such that |an| < ϵ for all n ≥ n0. Note that

|an| <
n2/3

n+ 1
<

1

n1/3

Hence, select n0 ∈ N such that n0 > 1
ϵ3 . (Think about why is this always possible.)

(iv) lim
n→∞

(
n

n+1 − n+1
n

)
= 0

Solution. Following approach similar to previous part, note that

|an| =
1

n

(
2− 1

n+ 1

)
<

2

n

Hence, select n0 ∈ N such that n0 > 2
ϵ . (Think again. Same logic.)

2. Show that the following limits exist and find them:

(i) lim
n→∞

(
n

n2+1 + n
n2+2 + · · ·+ n

n2+n

)
Solution.

n2

n2 + n
≤ an ≤ n2

n2 + 1
=⇒ lim

n→∞
an = 1

(iv) lim
n→∞

(n)1/n

Solution. Let n1/n = 1 + hn. For n ≥ 2, we have

n = (1+hn)
n ≥ 1+nhn+

(
n

2

)
h2
n >

(
n

2

)
h2
n =⇒ 0 < h2

n <
2

n− 1
=⇒ lim

n→∞
hn = 0 =⇒ lim

n→∞
an = 1

(v) lim
n→∞

(
cosπ

√
n

n2

)
Solution.

0 <

∣∣∣∣cosπ√n

n2

∣∣∣∣ ≤ 1

n2
=⇒ lim

n→∞
an = 0

(vi) lim
n→∞

(
√
n(
√
n+ 1−

√
n))

Solution.
√
n(
√
n+ 1−

√
n) =

√
n√

n+ 1 +
√
n
=

1

1 +
√

1 + 1
n

=⇒ lim
n→∞

an =
1

2

3. Show that the following sequences are not convergent:

(i) { n2

n+1}n≥1

Solution.
n2

n+ 1
= (n− 1) +

1

n+ 1
is not convergent since lim

n→∞

1

n+ 1
= 0
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4. Determine whether the sequences are increasing or decreasing:

(i) { n
n2+1}n≥1

Solution. Decreasing, since an = 1
n+ 1

n

and {n+ 1
n}n≥1 is increasing.

(iii) { 1−n
n2 }n≥2

Solution. Increasing, as an+1 − an = n(n−1)−1
n2(n+1)2 > 0 for n ≥ 2.

5. Prove that the following sequences are convergent by showing that they are monotone and bounded.

Also find their limits:

(ii) a1 =
√
2, an+1 =

√
2 + an ∀n ≥ 1

Solution. By induction,
√
2 ≤ an < 2 ∀n. Hence, an+1 − an = (2−an)(1+an)

an+
√
2+an

> 0 ∀n. Thus {an}n≥2 is

monotonically increasing and bounded above by 2. So lim
n→∞

an = a (say) exists, and
√
2 ≤ a < 2. Also,

a =
√
2 + a, id est, a2 = a+ 2 =⇒ a = −1, 2. Hence lim

n→∞
an = 2.

7. If lim
n→∞

an = L ̸= 0, show that there exists n0 ∈ N such that

|an| ≥
|L|
2

for all n ≥ n0.

Solution. Take ϵ = |L|/2. Then ϵ > 0 and since an → L, there exists n0 ∈ N such that |an − L| < ϵ

∀n ≥ n0. Now ||an| − |L|| ≤ |an − L| and hence |an| > |L| − ϵ = |L|/2 ∀n ≥ n0.

8. If an ≥ 0 and lim
n→∞

an = 0, show that lim
n→∞

a
1/2
n = 0.

Optional: State and prove a corresponding result if an → L > 0.

Solution. Given ϵ > 0, there exists n0 ∈ N such that |an| < ϵ2 ∀n ≥ n0. Hence |√an| < ϵ ∀n ≥ n0.

Hint. For optional part, try using the fact that an will be bounded and an−L = (
√
an−

√
L)(

√
an+

√
L).

10. Show that a sequence {an}n≥1 is convergent if and only if both the sub-sequences {a2n}n≥1 and

{a2n+1}n≥1 are convergent to the same limit.

Solution. The implication “ =⇒ ” is obvious. For the converse, suppose both {a2n}n≥1 and

{a2n+1}n≥1 converge to ℓ. Let ϵ > 0 be given. Choose n1, n2 ∈ N such that |a2n− ℓ| < ϵ for all n ≥ n1

and |a2n+1 − ℓ| < ϵ for all n ≥ n2. Let n0 = max{n1, n2}. Then |an − ℓ| < ϵ for all n ≥ 2n0 + 1.

Credits: MA105 Tutorial Solutions (2014)
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Solutions to Tutorial Sheet 2
2. Let f : R → R be such that lim

x→α
f(x) exists for α ∈ R. Show that

lim
h→0

[f(α+ h)− f(α− h)] = 0.

Analyse the converse.

Solution. Suppose lim
x→α

f(x) = L. Then lim
h→0

f(α+ h) = L, and since

|f(α+ h)− f(α− h)| ≤ |f(α+ h)− L|+ |f(α− h)− L|

it follows that
lim
h→0

|f(α+ h)− f(α− h)| = 0.

The converse is false. For a counter-example, consider α = 0 and

f(x) =

{
1 x = 0
1
|x| x ̸= 0

3. Discuss the continuity of the following functions:

(i) f(x) = sin 1
x , if x ̸= 0 and f(0) = 0

Solution. Continuous everywhere except at x = 0. To see that f is not continuous at x = 0, consider

the sequences {xn}n≥1, {yn}n≥1 where

xn :=
1

nπ
and yn :=

1

2nπ + π
2

.

Note that both xn, yn → 0, but f(xn) → 0 and |f(yn)| → 1.

Since there exists a finite (equal to 1 in absolute value) between two infinitesimally close values of x,
the function f is discontinuous at x = 0. The value that the function converges to should be exactly
the same for any choice of sequence converging to the point of concern (here x = 0).

(ii) f(x) = x sin 1
x , if x ̸= 0 and f(0) = 0

Solution. Continuous everywhere. For proving the continuity of f at x = 0, note that |f(x)| ≤ |x|,

and f(0) = 0.

4. Let f : R → R satisfy f(x+ y) = f(x) + f(y) for all x, y ∈ R. If f is continuous at 0, show that f is

continuous at every c ∈ R.

Optional. Show that the function f satisfies f(kx) = kf(x), for all k ∈ R.

Solution. Taking x = y = 0, we get f(0 + 0) = 2f(0) so that f(0) = 0. By the assumption of the

continuity of f at 0, lim
x→0

f(x) = 0. Thus,

lim
h→0

f(c+ h) = lim
h→0

[f(c) + f(h)] = f(c)

showing that f is continuous at x = c.

Hint. For the optional part, first verify the equality for all k ∈ Q and then use the continuity of f to

establish it for all k ∈ R.
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5. Let f(x) = x2 sin(1/x) for x ̸= 0 and f(0) = 0. Show that f is differentiable on R. Is f ′ a continuous

function?

Solution. Clearly, f is differentiable for all x ̸= 0 and the derivative is

f ′(x) = 2x sin

(
1

x

)
− cos

(
1

x

)
, x ̸= 0.

Also,

f ′(0) = lim
h→0

h2 sin
(
1
h

)
− 0

h
= 0.

Clearly, f ′ is continuous at any x ̸= 0. However lim
x→0

f ′(x) does not exist. Indeed, for any δ > 0, we

can choose n ∈ N such that x := 1/nπ, y := 1/(n+ 1)π are in (−δ, δ), but |f ′(x)− f ′(y)| = 2.

7. If f : (a, b) → R is differentiable at c ∈ (a, b), then show that

lim
h→0+

f(c+ h)− f(c− h)

2h

exists and equals f ′(c). Is the converse true? [Hint: Consider f(x) = |x|.]

Solution. For the first part, observe that

lim
h→0+

f(c+ h)− f(c− h)

2h
= lim

h→0+

1

2

[
f(c+ h)− f(c)

h
+

f(c− h)− f(c)

−h

]
=

1

2
[f ′(c) + f ′(c)] = f ′(c)

The converse is false. Consider, for example, f(x) = |x| and c = 0.

9. Using the theorem on derivatives of inverse function, compute the derivative of

(i) cos−1x, −1 < x < 1

Solution. Let f(x) = cos(x). Then f ′(x) = − sin(x) ̸= 0 for x ∈ (0, π).

Thus g(y) = f−1(y) = cos−1(y), −1 < y < 1 is differentiable and

g′(y) =
1

f ′(x)
where x is such that f(x) = y.

Therefore,

g′(y) =
−1

sin(x)
=

−1√
1− cos2(x)

=
−1√
1− y2

.

(ii) cosec−1x, |x| > 1

Solution. Note that

cosec−1(x) = sin−1 1

x
for |x| > 1

Since
d

dx
sin−1(x) =

1√
1− x2

for |x| < 1,
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one has, by the chain rule

d

dx
cosec−1(x) =

1√
1− 1

x2

(
−1

x2

)
, |x| > 1.

10. Compute dy
dx , given

y = f

(
2x− 1

x+ 1

)
and f ′(x) = sin(x2)

Solution. By the chain rule,

dy

dx
= f ′

(
2x− 1

x+ 1

)
d

dx

(
2x− 1

x+ 1

)
= sin

(
2x− 1

x+ 1

)2 [
3

(x+ 1)2

]
=

3

(x+ 1)2
sin

(
2x− 1

x+ 1

)2

11. Construct an example of a function f : R → R which is continuous every where and is differentiable

everywhere except at 2 points.

Solution. Consider f(x); = |x|+ |1− x| for x ∈ R.

12. Let f(x) =

{
1 x ∈ Q
0 x /∈ Q

Show that f is discontinuous at every c ∈ R.

Solution. For c ∈ R, select a sequence {an}n≥1 of rational numbers and a sequence {bn}n≥1 of

irrational numbers, both converging to c. Then {f(an)}n≥1 converges to 1 while {f(bn)}n≥1 converges

to 0, showing that limit of f at c does not exist.

15. Let f : (a, b) → R and c ∈ (a, b). Show that the following are equivalent:

(i) f is differentiable at c

(ii) There exists δ > 0 and a function ϵ1 : (−δ, δ) → R such that lim
h→0

ϵ1(h) = 0 and

f(c+ h) = f(c) + αh+ hϵ1(h) for all h ∈ (−δ, δ)

(iii) There exists α ∈ R such that

lim
h→0

(
|f(c+ h)− f(c)− αh|

|h|

)
= 0

Solution. To prove equivalence, we need to prove (i) ⇐⇒ (ii) ⇐⇒ (iii). We can prove it in a cyclic

manner, as (i) =⇒ (ii), (ii) =⇒ (iii) and (iii) =⇒ (i).
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(i) =⇒ (ii): Choose δ > 0 such that (c− δ, c+ δ) ⊂ (a, b). Take α = f ′(c) and

ϵ1(h) =

{
f(c+h)−f(c)−αh

h h ̸= 0

0 h = 0

(ii) =⇒ (iii): lim
h→0

|f(c+h)−f(c)−αh|
|h| = lim

h→0
|ϵ1(h)| = 0

(iii) =⇒ (i): lim
h→0

∣∣∣ f(c+h)−f(c)
h − α

∣∣∣ = 0 =⇒ lim
h→0

f(c+h)−f(c)
h exists and is equal to α.

Credits: MA105 Tutorial Solutions (2014)
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Solutions to Tutorial Sheet 3
1. Show that the cubic x3 − 6x+ 3 has all roots real.

Solution. f(x) = x3 − 6x+ 3 has stationary points at x = ±
√
2. Note that f(−

√
2) = 4

√
2 + 3 > 0

and f(
√
2) = 3− 4

√
2 < 0. Therefore, f has a root in (−

√
2,
√
2). Also, lim

x→−∞
f(x) → −∞ and so f

has a root in (−∞,−
√
2) and lim

x→∞
f(x) → ∞ implies f has a root in (

√
2,∞). Since f has at host 3

roots, all the roots are real.

4. Consider the cubic f(x) = x3 + px + q, where p and q are real numbers. If f has three distinct real
roots, show that 4p3 + 27q2 < 0 by proving the following:

(i) p < 0.

Solution. Since f has 3 distinct roots, say r1 < r2 < r3, by Rolle’s theorem, f ′(x) has at least 2 real

roots, say x1 and x2 such that r1 < x1 < r2 and r2 < x2 < r3. Since f ′(x) = 3x2 + p, this implies that

p < 0, so that 2 real roots exist.

(ii) f has maximum/minimum at ±
√

−p/3.

Solution. Solving f ′(x) = 0, we get x1 = −
√

−p/3 and x2 =
√
−p/3. Now f ′′(x1) = 6x1 < 0 and so

f has a local maxima at x = x1. Similarly, f has a local minima at x = x2.

(iii) The maximum/minimum values are of opposite signs.

Solution. Since f ′(x) is negative between its roots x1 and x2 and f has a root r2 in (x1, x2), we must

have f(x1) > 0 and f(x2) < 0. Further,

f(x1) = q +

√
−4p3

27
, f(x2) = q −

√
−4p3

27

so that
4p3 + 27q2

27
= f(x1)f(x2) < 0.

5. Use the MVT to prove | sin a− sin b| ≤ |a− b for all a, b ∈ R.

Solution. For some c between a and b, one has, by MVT,∣∣∣∣ sin a− sin b

a− b

∣∣∣∣ = | cos c| ≤ 1

7. Let a > 0 and f be continuous on [−a, a]. Suppose that f ′(x) exists and f ′(x) ≤ 1 for all x ∈ (−a, a).

If f(a) = a and f(−a) = −a, show that f(0) = 0.

Optional. Show that under the given conditions, in fact f(x) = x for every x.

Solution. By Lagrange’s MVT, there exists c1 ∈ (−a, 0) and there exists c2 ∈ (0, a) such that

f(0)− f(−a) = a× f ′(c1) and f(a)− f(0) = a× f ′(c2)
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Using the given conditions, we obtain

f(0) + a ≤ a and a− f(0) ≤ a

which implies f(0) = 0.

Hint. For the optional part, consider g(x) = f(x)− x, x ∈ [−a, a].

Solution. Since g′(x) = f ′(x)− 1 ≤ 0, g is decreasing over [−a, a]. As g(−a) = g(a) = 0, we have

g ≡ 0.

8. In each case, find a function f which satisfies all the given conditions, or else show that no such function
exists.

(i) f ′′(x) > 0 for all x ∈ R, f ′(0) = 1, f ′(1) = 1

Solution. No such function exists in view of Rolle’s theorem on [0, 1].

(ii) f ′′(x) > 0 for all x ∈ R, f ′(0) = 1, f ′(1) = 2.

Solution. f(x) = x+ x2

2

(iii) f ′′(x) ≥ 0 for all x ∈ R, f ′(0) = 1, f(x) ≤ 100 for all x > 0

Solution. f ′′(x) ≥ 0 =⇒ f ′ increasing. As f ′(0) = 1, by Lagrange’s MVT we have f(x)− f(0) ≥ x

for x > 0. Hence f with the required properties cannot exist.

(iv) f ′′(x) > 0 for all x ∈ R, f ′(0) = 1, f(x) ≤ 1 for all x < 0

Solution.

f(x) =

{
1

1−x x ≤ 0

1 + x+ x2 x > 0

9. Let f(x) = 1 + 12|x| − 3x2. Find the absolute maximum and the absolute minimum of f on [-2,5].

Verify it from the sketch of the curve y = f(x) on [-2,5].
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Solution. The points to check are the end points x = −2 and x = 5, the point of non-differentiability

x = 0 and the stationary point x = 2. The values of f at these points are given by

f(−2) = f(2) = 13, f(0) = 1, f(5) = −14.

Thus, global maximum is 13 at x = ±2 and global minimum is -14 at x = 5.

10. A window is to be made in the form of a rectangle surmounted by a semicircular portion with diameter

equal to the base of the rectangle. The rectangular portion is to be of clear glass and the semicircular

portion is to be of colored glass admitting only half as much light per square foot as the clear glass. If

the total perimeter of the window frame is to be p feet, find the dimensions of the window which will

admit the maximum light.

Solution. Let the dimensions of the rectangular portion be l and b. Then the radius of the semicircular

portion will be r = b/2. Then total perimeter is given by

p = 2l + b+ πr = 2l +
(
1 +

π

2

)
b.

Assume that clear glass allows 1 unit of light per square foot. Then the total light admitted by the
window is given as

L = l × b× 1 +
πr2

2
× 1

2
= lb+

π

16
b2

Using the previous relation, we can eliminate l, and get

L =
π

16
b2 + b

(
p−

(
1 + π

2

)
b

2

)
= b2

(
−3π + 8

16

)
+ b

(p
2

)
To maximise L with respect to b, we set dL

db to 0. This gives us

2b

(
−3π + 8

16

)
+

p

2
= 0

Hence the dimensions to maximise admitted light are

b =
4p

3π + 8
and l =

(π + 4)p

2(3π + 8)

Credits: MA105 Tutorial Solutions (2014)
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Solutions to Tutorial Sheet 4
5. Let f(x) = 1 if x ∈ [0, 1] and f(x) = 2 if x ∈ (1, 2]. Show from the first principles that f is Riemann

integrable on [0, 2] and find

ˆ 2

0

f(x)dx.

Solution. The given function is integrable as it is monotone. Let Pn be the partition of [0, 2] into

2× 2n equal parts. Then U(Pn, f) = 3 and

L(Pn, f) = 1 + 1× 1

2n
+ 2× 2n − 1

2n
→ 3

as n → ∞. Thus,

ˆ 2

0

f(x)dx = 3.

6. (a) Let f : [a, b] → R be Riemann integrable and f(x) ≥ 0 for all x ∈ [a, b]. Show that

ˆ b

a

f(x)dx ≥ 0.

Further, if f is continuous and

ˆ b

a

f(x)dx = 0, show that f(x) = 0 for all x ∈ [a, b].

Solution. f(x) ≥ 0 =⇒ U(P, f) ≥ 0, L(P, f) ≥ 0 =⇒
ˆ b

a

f(x)dx ≥ 0. Suppose, moreover, f is

continuous and

ˆ b

a

f(x)dx = 0. Assume f(c) > 0 for some c ∈ [a, b]. Then f(x) >
f(c)

2
in a δ-nbhd of

c for some δ > 0. This implies that

U(P, f) > δ × f(c)

2

for any partition P , and hence,

ˆ b

a

f(x)dx ≥ δ
f(c)

2
> 0, a contradiction.

(b) Give an example of a Riemann integrable function on [a, b] such that f(x) ≥ 0 for all x ∈ [a, b] and
ˆ b

a

f(x)dx = 0, but f(x) ̸= 0 for some x ∈ [a, b].

Solution. On [0, 1] take

f(x) =

{
0 x ̸= 0

1 x = 0

7. Evaluate lim
n→∞

Sn by showing that Sn is an approximate Riemann sum for a

suitable function over a suitable interval:

(i) Sn =
1

n5/2

n∑
i=1

i3/2

Solution. Sn =
1

n

n∑
i=1

(
i

n

)3/2

→
ˆ 1

0

x3/2dx =
2

5
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(iii) Sn =

n∑
i=1

1√
in+ n2

Solution. Sn =
1

n

n∑
i=1

1√
1 + i

n

→
ˆ 1

0

dx√
1 + x

= 2(
√
2− 1)

(iv) Sn =
1

n

n∑
i=1

cos
iπ

n

Solution. Sn =
1

n

n∑
i=1

cos
iπ

n
→
ˆ 1

0

cosπx = 0

(v) Sn =
1

n

{
n∑

i=1

(
i

n

)
+

2n∑
i=n+1

(
i

n

)3/2

+

3n∑
i=2n+1

(
i

n

)2
}

Solution. Sn →
ˆ 1

0

xdx+

ˆ 2

1

x3/2dx+

ˆ 3

2

x2dx =
1

2
+

2

5
(4
√
2− 1) +

19

3

8. (b) Compute
dF

dx
, if for x ∈ R:

(i) F (x) =

ˆ 2x

1

cos(t2)dt

Solution. F ′(x) = cos((2x)2)× 2 = 2 cos(4x2)

(ii) F (x) =

ˆ x2

0

cos(t)dt

Solution. F ′(x) = cos(x2)× 2x = 2x cos(x2)

9. Let p be a real number and let f be a continuous function on R that satisfies the equation f(x+p) = f(x)

for all x ∈ R. Show that the integral

ˆ a+p

a

f(t)dt has the same value for every real number a.

(Hint: Consider F (a) =

ˆ a+p

a

f(t)dt, a ∈ R).

Solution. Define F (x) =

ˆ x+p

x

f(t)dt, x ∈ R. Then F ′(x) = f(x+ p)− f(x) = 0 for every x.

10. Let f : R → R be continuous and λ ∈ R, λ ̸= 0. For x ∈ R, let

g(x) =
1

λ

ˆ x

0

f(t) sinλ(x− t)dt.

Show that g′′(x) + λ2g(x) = f(x) for all x ∈ R and g(0) = g′(0) = 0.

Solution. Write sinλ(x− t) as sin(λx) cos(λt)− cos(λx) sin(λt) in the integrand, take terms in x

outside the integral, evaluate g′(x) and g′′(x), and simplify to show LHS = RHS. From the expressions

for g(x) and g′(x) it should be clear that g(0) = g′(0) = 0.
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Alternate. The problem can also be solved by appealing to the following theorem:

Theorem A. Let h(t, x) and
∂h

∂x
(t, x) be continuous functions of t and x on the rectangle [a, b]× [c, d].

Let u(x) and v(x) be differentiable functions of x on [c, d] such that, for each x ∈ [c, d], the points

(u(x), x) and (v(x), x) belong to [a, b]× [c, d]. Then

d

dx

ˆ v(x)

u(x)

h(t, x)dt =

ˆ v(x)

u(x)

∂h

∂x
(t, x)dt− u′(x)h(u(x), x) + v′(x)h(v(x), x).

Consider now

g(x) =
1

λ

ˆ x

0

f(t) sinλ(x− t)dt.

Let h(t, x) =
1

λ
f(t) sinλ(x− t), u(x) = 0 and v(x) = x. Then it follows from Theorem A that

g′(x) =

ˆ x

0

f(t) cosλ(x− t)dt.

Again, applying Theorem A, we have

g′′(x) = −λ

ˆ x

0

f(t) sinλ(x− t) + f(x).

Thus g′′(x) + λ2g(x) = f(x). g(0) = g′(0) = 0 is obvious from the expressions for g(x) and g′(x).

Credits: MA105 Tutorial Solutions (2014)
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Solutions to Tutorial Sheet 5
1. Find the area of the region bounded by the given curves in each of the following cases:

(i)
√
x+

√
y = 1, x = 0 and y = 0.

Solution.

ˆ 1

0

ydx =

ˆ 1

0

(
1 + x− 2

√
x
)
dx = 1 +

1

2
− 2× 2

3
=

1

6
.

2. Let f(x) = x− x2 and g(x) = ax. Determine a so that the region above the graph of g and below the

graph of f has area
9

2
.

Page 1



MA109 Tutorial 5 Sarthak Mittal

Solution.

∣∣∣∣ˆ 1−a

0

(
x− x2 − ax

)
dx

∣∣∣∣ = ∣∣∣∣ˆ 1−a

0

(
(1− a)x− x2

)
dx

∣∣∣∣ = 9

2
=⇒

∣∣∣∣ (1− a)3

6

∣∣∣∣ = 9

2

a = −2, 4.

3. Find the area of the region inside the circle r = 6a cos θ and outside the cardioid r = 2a(1 + cos θ).

Solution. Required area = 2×
ˆ π/3

0

1

2
(r22 − r21)dθ = 4a2

ˆ π/3

0

(8 cos2 θ − 2 cos θ − 1)dθ = 4πa2.

5. For the following curve, find the arc length as well as the area of the surface generated by revolving it
about the line y = −1:

y =
x3

3
+

1

4x
, 1 ≤ x ≤ 3
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Solution.
dy

dx
= x2 +

(
− 1

4x2

)
=⇒ ds

dx
=

√
1 +

(
dy

dx

)2

=

√
1 + x4 +

1

16x4
− 1

2
= x2 +

1

4x2
.

Therefore, the arc length is given by,

ˆ 3

1

(
x2 +

1

4x2

)
dx =

[
x3

3
− 1

4x

]3
1

=
53

6
.

The surface area is,

S =

ˆ 3

1

2π(y + 1)
ds

dx
dx =

ˆ 3

1

2π

(
x3

3
+

1

4x
+ 1

)(
x2 +

1

4x2

)
dx

= 2π

[
x6

18
+

x3

3
+

x2

6
− 1

32x2
− 1

4x

]3
1

=
1823

18
π

7. Find the volume common to the cylinders x2 + y2 = a2 and y2 + z2 = a2.

Solution. In the first octant, the sections perpendicular to the y-axis are squares with

0 ≤ x ≤
√
a2 − y2, 0 ≤ z ≤

√
a2 − y2, 0 ≤ y ≤ a.

Since the squares have sides of length
√
a2 − y2, the area of the cross-section at y is A(y) = 4(a2−y2).

Thus the required volume is

ˆ a

−a

A(y)dy = 8

ˆ a

0

(a2 − y2)dy =
16a3

3
.

8. A fixed line L in 3-space and a square of side r in a plane perpendicular to L are given. One vertex

of the square is on L. As this vertex moves a distance h along L, the square turns through a full

revolution with L as the axis. Find the volume of the solid generated by this motion.
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Solution. Let the line be along z-axis, 0 ≤ z ≤ h. For any fixed z, the section is a square of area r2.

Hence the required volume is

ˆ h

0

r2dz = r2h.

10. A round hole of radius r =
√
3 cm is bored through the center of a solid ball of radius R = 2 cm. Find

the volume cut out.

Solution. Required volume = Volume of the sphere − Volume generated by revolving the shaded

region around the y-axis.

Washer Method: Integrating x as a function of y (using horizontal solid circular washers)

32

3
π −

[ˆ 1

−1

πx2dy − 2× π
(√

3
)2

]
=

32

3
π − 2π

[ˆ 1

0

(4− y2)dy − 3

]
=

32

3
π − 2π

[
11

3
− 3

]
=

28

3
π.

Shell Method: Integrating y as a function of x (using vertical hollow cylindrical shells)

32

3
π −
ˆ 2

√
3

2πx× 2ydx =
32

3
π − 4π

ˆ 2

√
3

x
√
4− x2dx =

32

3
π − 4π

1

3
=

28

3
π.

Credits: MA105 Tutorial Solutions (2014)
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Solutions to Tutorial Sheet 6
2. Describe the level curves and the contour lines for the following functions corresponding to the values

c = −3,−2,−1, 0, 1, 2, 3, 4:

(i) f(x, y) = x− y

Solution. A level curve corresponding to any of the given values of c is the straight line x− y = c in

the xy-plane. A contour line corresponding to any of the given values of c is the same line shifted to

the plane z = c in R3.

(ii) f(x, y) = x2 + y2

Solution. Level curves do not exist for c = −3,−2,−1. The level curve corresponding to c = 0 is

the point (0, 0). The level curves corresponding to c = 1, 2, 3, 4 are concentric circles centered at the

origin in the xy-plane. Contour lines corresponding to c = 1, 2, 3, 4 are the cross-sections in R3 of the

paraboloid z = x2 + y2 by the plane z = c, i.e., circles in the plane z = c centered at (0, 0, c).

(iii) f(x, y) = xy

Solution. For c = −3,−2,−1, level curves are rectangular hyperbolas xy = c in the xy-plane with

branches in the second and fourth quadrant. For c = 1, 2, 3, 4, level curves are rectangular hyperbolas

xy = c in the xy-plane with branches in the first and third quadrant. For c = 0, the corresponding

level curve (resp. the contour line) is the union of the x-axis and the y-axis in the xy-plane (resp. in

the xyz-space). A contour line corresponding to a non-zero c is the cross-section of the hyperboloid

z = xy by the plane z = c, i.e., a rectangular hyperbola in the plane z = c.

3. Using definition, examine the following functions for continuity at (0, 0). The expressions below give

the value at (x, y) ̸= (0, 0). At (0, 0), the value should be taken as zero:

(i)
x3y

x6 + y2

Solution. Discontinuous at (0, 0) (check lim
(x,y)→(0,0)

f(x, y) using y = mx3).

(ii) xy
x2 − y2

x2 + y2

Solution. Continuous at (0, 0) (since

∣∣∣∣xyx2 − y2

x2 + y2

∣∣∣∣ ≤ |xy|).

(iii) ||x| − |y|| − |x| − |y|

Solution. Continuous at (0, 0) (since |f(x, y)| ≤ 2(|x|+ |y|) ≤ 4
√
x2 + y2).

6. Examine the following functions for the existence of partial derivatives at (0, 0). The expressions below

give the value at (x, y) ̸= (0, 0). At (0, 0), the value should be taken as zero:

(i) xy
x2 − y2

x2 + y2
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Solution. fx(x, y) = y

(
1− 2y4

(x2 + y2)2

)
and fy(x, y) = x

(
2x4

(x2 + y2)2
− 1

)
, hence |fx(x, y)| ≤ |y|

and |fy(x, y)| ≤ |x| (since 0 ≤ y4

(x2 + y2)2
≤ 1 and 0 ≤ x4

(x2 + y2)2
≤ 1). So fx(0, 0) = 0 = fy(0, 0).

(ii)
sin2(x+ y)

|x|+ |y|

Solution. fx(0, 0) = lim
h→0

sin2(h)/|h|
h

= lim
h→0

sin2(h)

h|h|
does not exist (because LHL ̸= RHL).

Similarly, fy(0, 0) does not exist.

7. Let f(0, 0) = 0 and

f(x, y) = (x2 + y2) sin
1

x2 + y2
for (x, y) ̸= (0, 0).

Show that f is continuous at (0, 0), and the partial derivatives of f exist but are not bounded in any

disc (howsoever small) around (0, 0).

Solution. |f(x, y)| ≤ x2 + y2 =⇒ f is continuous at (0, 0). Now,

fx = 2x

(
sin

(
1

x2 + y2

)
− 1

x2 + y2
cos

(
1

x2 + y2

))

It is easily checked that fx(0, 0) = fy(0, 0) = 0. The function 2x sin

(
1

x2 + y2

)
is bounded in any disc

centered at (0, 0), while
2x

x2 + y2
cos

(
1

x2 + y2

)
is unbounded in any such disc (consider for example

(x, y) =

(
1√
nπ

, 0

)
for n a large positive integer). Thus fx(0, 0) is unbounded in any disc around (0, 0).

8. Let f(0, 0) = 0 and

f(x, y) =


x sin(1/x) + y sin(1/y) x ̸= 0, y ̸= 0

x sin(1/x) x ̸= 0, y = 0

y sin(1/y) y ̸= 0, x = 0

Show that none of the partial derivatives of f exist at (0, 0) although f is continuous at (0, 0).

Solution. fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0
sin

1

h
does not exist. Similarly fy(0, 0) does not

exist. Clearly, f is continuous at (0, 0).

9. Examine the following functions for the existence of directional derivatives and differentiability at (0, 0).

The expressions below give the value at (x, y) ̸= (0, 0). At (0, 0), the value should be taken as zero:

(i) xy
x2 − y2

x2 + y2

Solution. Let v⃗ = (a, b) be any unit vector in R2. We have

(Dv⃗f)(0, 0) = lim
h→0

f(hv⃗)

h
= lim

h→0

f(ha, hb)

h
= lim

h→0

h2ab
(

a2−b2

a2+b2

)
h

= 0.
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Therefore (Dv⃗f)(0, 0) exists and equals 0 for every unit vector v⃗ in R2. For considering differentiability,

note that fx(0, 0) = (Dîf)(0, 0) = 0 = fy(0, 0) = (Dĵf)(0, 0). We have then

lim
(h,k)→(0,0)

|f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)|√
h2 + k2

= lim
(h,k)→(0,0)

|hk(h2 − k2)|
(h2 + k2)3/2

= 0,

since

0 ≤ |hk(h2 − k2)

(h2 + k2)3/2
≤ |hk|√

h2 + k2
≤

√
h2 + k2.

Thus f is differentiable at (0, 0).

(ii)
x3

x2 + y2

Solution. Note that for any unit vector v⃗ = (a, b) in R2, we have

(Dv⃗f)(0, 0) = lim
h→0

h3a3

h(h2(a2 + b2))
= lim

h→0

a3

(a2 + b2)
=

a3

(a2 + b2)
.

To consider differentiability, note that fx(0, 0) = 1, fy(0, 0) = 0 and

lim
(h,k)→(0,0)

|f(h, k)− h× 1− k × 0|√
h2 + k2

= lim
(h,k)→(0,0)

|h3/(h2 + k2)− h|√
h2 + k2

= lim
(h,k)→(0,0)

|hk2|
(h2 + k2)3/2

does not exist (consider k = mh, and then put m = 10−5). Hence f is not differentiable at (0, 0).

(iii) (x2 + y2) sin
1

x2 + y2

Solution. For any unit vector v⃗ ∈ R2, one has,

(Dv⃗f)(0, 0) = lim
h→0

h2(a2 + b2) sin
[

1
h2(a2+b2)

]
h

= 0.

Also,

lim
(h,k)→(0,0)

∣∣∣(h2 + k2) sin
[

1
h2+k2

]∣∣∣
√
h2 + k2

= lim
(h,k)→(0,0)

√
h2 + k2 sin

(
1

h2 + k2

)
= 0.

Therefore f is differentiable at (0, 0).

10. Let f(x, y) = 0 if y = 0 and

f(x, y) =
y

|y|
√
x2 + y2 if y ̸= 0.

Show that f is continuous at (0, 0), (Dv⃗f)(0, 0) exists for every vector v⃗, yet f is not differentiable at

(0, 0).

Solution. f(0, 0) = 0, |f(x, y)| ≤
√
x2 + y2 =⇒ f is continuous at (0, 0). Let v⃗ be a unit vector in

R2. For v⃗ = (a, b), with b ̸= 0, one has,

(Dv⃗f)(0, 0) = lim
h→0

1

h

hb

|hb|
√
h2a2 + h2b2 =

(
√
a2 + b2)b

|b|
.
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If v⃗ = (a, 0), then (Dv⃗f)(0, 0) = 0. Hence (Dv⃗f)(0, 0) exists for every unit vector v⃗ ∈ R2. Further,

fx(0, 0) = 0, fy(0, 0) = 1,

and

lim
(h,k)→(0,0)

|f(h, k)− 0− h× 0− k × 1|√
h2 + k2

= lim
(h,k)→(0,0)

∣∣∣ k
|k|

√
h2 + k2 − k

∣∣∣
√
h2 + k2

= lim
(h,k)→(0,0)

∣∣∣∣ k|k| − k√
h2 + k2

∣∣∣∣
does not exist (consider h = mk and then put m = 10−5) so that f is not differentiable at (0, 0).

Credits: MA105 Tutorial Solutions (2014)
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Solutions to Tutorial Sheet 7
1. Let F (x, y, z) = x2 + 2xy − y2 + z2. Find the gradient of F at (1,−1, 3) and the equations of the

tangent plane and the normal line to the surface F (x, y, z) = 7 at (1,−1, 3).

Solution. (∇F )(1,−1, 3) =

(
∂F

∂x
(1,−1, 3),

∂F

∂y
(1,−1, 3),

∂F

∂z
(1,−1, 3)

)
= 4j+ 6k.

The tangent plane to the surface F (x, y, z) = 7 at the point (1,−1, 3) is given by,

0× (x− 1) + 4× (y + 1) + 6× (z − 3) = 0 =⇒ 2y + 3z = 7.

The normal line to the surface F (x, y, z) = 7 at the point (1,−1, 3) is given by x = 1, 3y − 2z + 9 = 0.

2. Find Du⃗F (2, 2, 1), where F (x, y, z) = 3x− 5y + 2z, and u⃗ is the unit vector in the direction of the

outward normal to the sphere x2 + y2 + z2 = 9 at (2, 2, 1).

Solution. u⃗ =
(2, 2, 1)√

22 + 22 + 12
=

(
2

3
,
2

3
,
1

3

)
=

2

3
(i+ j)

1

3
k and (∇F )(2, 2, 1) = 3i− 5j+2k. Therefore,

Du⃗F (2, 2, 1) = (∇F )(2, 2, 1) · u⃗ =
6

3
− 10

3
+

2

3
= −2

3
.

3. Given sin(x+ y) + sin(y + z) = 1, find
∂2z

∂x∂y
, provided cos(y + z) ̸= 0.

Solution. Given that sin(x+ y) + sin(y + z) = 1 (with cos(y + z) ̸= 0).

You may assume that z is a sufficiently smooth function of x and y.

Differentiating w.r.t. x while keeping y fixed, we get,

cos(x+ y) + cos(y + z)
∂z

∂x
= 0.

(*)

Similarly, differentiating w.r.t. y while keeping x fixed, we get,

cos(x+ y) + cos(y + z)

(
1 +

∂z

∂y

)
= 0.

(**)

Differentiating (∗) w.r.t y we have,

− sin(x+ y)− sin(y + z)

(
1 +

∂z

∂y

)
∂z

∂x
+ cos(y + z)

∂2z

∂x∂y
= 0.

Thus, using (∗) and (∗∗), we have,

∂2z

∂x∂y
=

1

cos(y + z)

[
sin(x+ y) + sin(y + z)

(
1 +

∂z

∂y

)
∂z

∂x

]
=

1

cos(y + z)

[
sin(x+ y) + sin(y + z)

(
−cos(x+ y)

cos(y + z)

)(
−cos(x+ y)

cos(y + z)

)]
=

sin(x+ y)

cos(y + z)
+ tan(y + z)

(
cos2(x+ y)

cos2(y + z)

)
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4. If f(0, 0) = 0 and

f(x, y) = xy
x2 − y2

x2 + y2
for (x, y) ̸= (0, 0),

show that both fxy and fyx exist at (0, 0), but they are not equal. Are fxy and fyx continuous at

(0, 0)?

Solution. We have,

fxy(0, 0) = lim
k→0

fx(0, k)− fx(0, 0)

k
,

where (noting that k ̸= 0),

fx(0, k) = lim
h→0

f(h, k)− f(0, k)

h
= −k and fx(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= 0.

Therefore,

fxy(0, 0) = lim
k→0

−k − 0

k
= −1 ; similarly fyx(0, 0) = 1.

Thus,
fxy(0, 0) ̸= fyx(0, 0).

By directly computing fxy, fyx for (x, y) ̸= (0, 0), one observes that these are not continuous at (0, 0).

5. Show that the following functions have local minima at the indicated points:

(i) f(x, y) = x4 + y4 + 4x− 32y − 7, (x0, y0) = (−1, 2)

Solution. fx(−1, 2) = 0 = fy(−1, 2), Hf (−1, 2) =

[
12 0
0 48

]
D(−1, 2) = 12× 48− 02 > 0, fxx(−1, 2) = 12 > 0 =⇒ (−1, 2) is a point of local minimum of f .

(ii) f(x, y) = x3 + 3x2 − 2xy + 5y2 − 4y3, (x0, y0) = (0, 0)

Solution. fx(0, 0) = 0 = fy(0, 0), Hf (0, 0) =

[
6 −2
−2 10

]
D(0, 0) = 6× 10− (−2)2 > 0, fxx(0, 0) = 6 > 0 =⇒ (0, 0) is a point of local minimum of f .

6. Analyze the following functions for local maxima, local minima and saddle points:

(i) f(x, y) = (x2 − y2)e−(x2+y2)/2

Solution. fx = e−(x2+y2)/2(2x− x3 + xy2), fy = e−(x2+y2)/2(−2y + y3 − x2y).

Critical points are (0, 0), (±
√
2, 0), (0,±

√
2).

Hf (0, 0) =

[
2 0
0 −2

]
=⇒ (0, 0) is a saddle point of f .

Hf (±
√
2, 0) =

[
−4/e 0
0 −4/e

]
=⇒ (±

√
2, 0) are points of local maximum of f .

Hf (0,±
√
2) =

[
4/e 0
0 4/e

]
=⇒ (0,±

√
2) are points of local minimum of f .
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(ii) f(x, y) = x3 − 3xy2

Solution. fx = 3x2 − 3y2 and fy = −6xy imply that (0, 0) is the only critical point of f . Now,

Hf (0, 0) =

[
0 0
0 0

]
.

Thus the standard derivative test fails. However, f(±ϵ, 0) = ±ϵ3 for any ϵ so that (0, 0) is a saddle

point of f .

7. Find the absolute maximum and the absolute minimum of

f(x, y) = (x2 − 4x) cos y for 1 ≤ x ≤ 3,−π/4 ≤ y ≤ π/4.

Solution. From f(x, y) = (x2 − 4x) cos y (1 ≤ x ≤ 3,−π/4 ≤ y ≤ π/4), we have,

fx = (2x− 4) cos y and fy = −(x2 − 4x) sin y.

Thus the only critical pointof f is P = (2, 0). Note that f(P ) = −4. Next, g±(x) ≡ f(x,±π

4
) =

(x2 − 4x)√
2

for 1 ≤ x ≤ 3 has x = 2 as the only critical point so that we consider P± = (2,±π

4
). Note

that f(P±) =
−4√
2
. We also need to check g±(1) = f(1,±π

4
) (≡ f(Q±)) and g±(3) = f(3,±π

4
) (≡

f(S±)). Note that f(Q±) =
−3√
2
and f(S±) = −−3√

2
.

Next, consider h(y) ≡ f(1, y) = −3 cos y for − π

4
≤ y ≤ π

4
. The only critical point of h is y = 0. Note

that h(0) = f(1, 0) (≡ f(M)) = −3. (h(±π

4
) is just f(Q±)).

Finally, consider k(y) = f(3, y) = −3 cos y for − π

4
≤ y ≤ π

4
. The only critical point of k is y = 0.

Note that k(0) = f(3, 0) (≡ f(T )) = −3. (k(±π

4
) is just f(S±)).

Summarizing, we have the following table:

Points P+ P− Q+ Q− S+ S− T P M

Values − 4√
2

− 4√
2

− 3√
2

− 3√
2

− 3√
2

− 3√
2

-3 -4 -3

By inspection one finds that fmin = −4 attained at P = (2, 0) and fmax =
−3√
2
at Q± = (1,±π

4
) and

at S± = (3,±π
4 ).

Credits: MA105 Tutorial Solutions (2014)
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