MA106 Linear Algebra 2022

Tutorial 0 D1-T4

Kartik Gokhale

Department of Computer Science & Engineering IIT Bombay

2022

Introduction

Welcome to MA106: Linear Algebra.

The course serves as a background for a lot of courses in image/signal processing, data science and machine learning etc. What the course is thought to be about:

So algebra and linear algebra have very similiar names, therefore there must be strong connection between those subdisciplines

Introduction

What the course is actually about:

- Systems of linear equations and concepts of vector spaces
- linear transformations
- Eigenvalue problem
- Spectral theorem(s)
- Abstract vector spaces

Let \hat{a}, \hat{b} be unit vectors in \mathbb{R}^3 . Discuss whether the equation $\hat{a} \times \hat{x} = \hat{b}$ has solutions in \mathbb{R}^3 ; \times is the cross product.

Speaking geometrically, we can note the following points about this problem

Obtaining Necessary Condition(s)

- Vectors \hat{a} and 'x', should it exist, will 'span' a plane.
- Vector \hat{b} must be perpendicular to this plane formed.
- Thus, \hat{b} must be perpendicular to \hat{a} independent of x.

Thus, we obtain our first necessary condition geometrically, stating that $\hat{a} \cdot \hat{b} = 0$.

Is this condition sufficient?

Yes! This is also a sufficient condition. How? Consider the plane spanned by \hat{a} and \hat{b} . Consider a perpendicular to this plane, obtained by

$$\hat{c} = \hat{b} \times \hat{a}$$

Now, consider

$$\hat{a} \times \hat{c} = \hat{a} \times (\hat{b} \times \hat{a})$$

$$= \hat{b}$$

Thus, $\hat{b} \times \hat{a}$ is an acceptable solution to the required equation. Thus, we have the sufficient condition as well.

We have a solution uniquely specified by \hat{b} and \hat{a} . Is this solution unique?

No. Clearly,

$$\hat{a} \times (\hat{b} \times \hat{a} + \lambda \hat{a}) = \hat{b} + \lambda \hat{a} \times \hat{a}^{-0}$$

= \hat{b}

Let
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 and $p = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathcal{R}^2$; $(x_1^2 + x_2^2 = 1)$. What can you say about the set $\{p, Ap, A^2p, \ldots\}$? Is it a finite or infinite set?

Matrix A looks particularly tempting(try to visualise what this matrix does geometrically). Let us, be motivated by this and attempt to find a closed form expression for A^n .

Claim

Closed form expression for the n^{th} power of the matrix is

$$A^n = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}$$

How to prove this? Easy - Induction!

Let us now parametrize \vec{p} . We can do this as $p=\begin{bmatrix}\cos\phi\\\sin\phi\end{bmatrix},\phi\in\mathcal{R}$

Now, we can find a closed form expression for $A^n p$, which is rather trivially,

$$A^{n}p = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix} \begin{bmatrix} \cos \phi \\ \sin \phi \end{bmatrix} = \begin{bmatrix} \cos(n\theta + \phi) \\ \sin(n\theta + \phi) \end{bmatrix}$$

Now, to consider the given set, if we have a finite number of elements, say m, then the $(m+1)^{st}$ element must be the same as the 1^{st} element and thus, $m\theta$ must be an integral multiple of 2π . Completing this argument, we can assess

- If θ is a rational multiple of π , the set is finite.
- If θ is not a rational multiple of π , the set is countably infinite¹

¹Why not uncountable

Consider the equation
$$x^2 + y^2 - z^2 + 7xy - 3yz + 6xz = 3$$
. Write it in the form $\begin{bmatrix} x & y & z \end{bmatrix} A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ for some symmetric (3 × 3) matrix

A. Is A unique? What if we drop the symmetry requirement?

Let us consider the very general expression

$$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Expanding and comparing coefficients, we obtain

$$a = 1,$$
 $e = 1,$ $i = -1$
 $(b + d) = 7,$ $(c + g) = -3,$ $(f + h) = 6$

The solutions are clearly not unique. However, if we impose a restriction on A that is is symmetric, we obtain

$$b = d = 3.5, c = g = -1.5, f = h = 3$$

and thus, we obtain a unique symmetric A

$$A = \begin{bmatrix} 1 & 3.5 & 3 \\ 3.5 & 1 & -1.5 \\ 3 & -1.5 & -1 \end{bmatrix}$$

12 / 18

Recall the notion of an invertible matrix. How would you decide if a (3×3) matrix is invertible or not? If \hat{u} is a unit vector in \mathcal{R}^3 -column vector. Is $I - uu^T$ invertible? Discuss the map $f: \mathcal{R}^3 \to \mathcal{R}^3$; $f(x) = (I - 2uu^T)x$ geometrically

Claim

A matrix can be invertible if we can ensure that

$$Ax = \vec{0} \implies x = \vec{0}$$

Equivalent to the condition imposable on the determinant

Proof: Suppose we had $Av_1 = Av_2$ then $v_1 = v_2$ and thus, for a given value of Ax, we have a unique value of x. Thus, in the range of Ax, the transformation represented by A is invertible

Consider

$$(I - uu^T)u = u - u = 0$$

Since $I - uu^T$ does NOT satisfy the above condition, it is not invertible.

Claim

The map $f: \mathbb{R}^3 \to \mathbb{R}^3$; $f(x) = (I - 2uu^T)x$ is a reflection of a given vector about the plane perpendicular to u.

Proof:

- Consider vectors perpendicular to \hat{u} , Clearly, $(I 2uu^T)x = x$
- Consider vectors parallel to \hat{u} , Clearly, $(I 2uu^T)x = -x$
- Thus, a general vector has its component along \hat{u} reversed and component perpendicular to \hat{u} unchanged

Find 2 mutually perpendicular unit vectors \hat{u} , \hat{v} such that \hat{u} , \hat{v} lie on the plane x+y+z=0. Write out a parametrization for circle $x^2+y^2+z^2=1, x+y+z=0$

This provides us with a required parametrization for the plane. We can express any point in the plane as a linear combination of the vectors obtained above.

$$ec{x} = k_1 \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} + k_2 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, k_1, k_2 \in \mathcal{R}$$

$$(k_1, k_2) \mapsto (k_1 + k_2, k_1 - k_2, -2k_1)$$

We also have a parametrization for the unit circle as required. Thus, we have

$$(\theta)\mapsto(\cos\theta,\sin\theta)$$

Thus, the circle is parameterized as

$$(\theta) \mapsto (a\cos\theta + b\sin\theta, a\cos\theta - b\sin\theta, -2a\cos\theta)$$

$$(a = \frac{1}{\sqrt{6}}, b = \frac{1}{\sqrt{2}})$$

Kartik Gokhale

Utilising

$$||Ax|| = x^T A^T A X$$

We can conclude that

$$A^TA = I$$