Service Rating Website
APl wrapper for restaurants, movies, and hotels
(Sarthak & Prathamesh)

Everyone must have used apps online to order food, electronics, etc. Even if not, at
least you must know about it. There are also websites to book hotels for a stay. The
plain old Google Maps also displays ratings of restaurants, hotels, and shops. Have
you ever thought about how these applications work or how they break down into
components that are then connected? Choose this project to find out and design one
yourself!

Framework

You need to design a web-API wrapper that can query external APIs for information
about services like hotels and restaurants based on the user's parameters. The
requirements mentioned here are the minimum ones. You are free to add other
features and implementations to your wrapper. The parts and sub-parts you need to
make are listed to help you divide the work among teammates. We recommend (note
- this does not mean you have to use it) using Django or Django-REST for the back end
and React]S or Angular for the front end.

Logistics

Each section/feature has some allocated marks. You are free to add more features,
but make sure you are prepared to explain them during the viva. We might have an
objective (auto-graded) evaluation for some project sections.

Requirements
- Signup/Login Page
- Logout Page
- Profile Page
- Dashboard
- Display
- Search with Filters
- Reviews


https://www.djangoproject.com/
https://www.django-rest-framework.org/
https://reactjs.org/
https://angular.io/

Details

Signup/Login

Here it would be best if you implemented authentication so that users can sign
up/log in to the wrapper website using a username and password. You should also
ensure no duplicate users (same username). Once signed up, the user should be able
to log in using the same credentials.

Logout
Logout will log the user out but should preserve the credentials provided.

Profile
Display user information along with a list of reviews this user had submitted to the
website. You can add an option to update profile information.

Dashboard

This page should show the option to search across hotels and restaurants and a
separate search for movies. Base the search on location (primarily) and any other
parameters you wish to search using. You can assume that searching would be using
strings. There should be separate redirects to pages for hotels, movies, and
restaurants, respectively.

Display

These are separate pages, one each for hotels, movies, and restaurants. There should
be a list of ‘suggested’ hotels (or movies or restaurants) on this page, sorted based on
ratings and reviews or whatever parameters you see fit.

Search

This search tool will allow users to browse through available options, depending on
the parameter they want to search for. The results displayed should be sorted as you
see fit. The data displayed can be updated dynamically or periodically.

Filters

This section involves filtering the results based on price range, rating range, etc.,
which can be chosen using either a checkbox or a two-pointer slider. Filter and
display the results accordingly. Try to make filters as per the properties in API.



Reviews

When the user selects some result from the display, they should have the option to
add their review (via a form object that displays fields) when they click a button. The
database should accordingly update the data. This submitted review should also
appear on the user’s profile page when they visit that.

Beginning

To start, think about the database and the components/objects you might need to
store. What kind of tables will you need? Consider all things, like users, hotels,
restaurants, types of queries, what connections/mappings you need between
components, etc.

Also, look out for available external APIs that can suit your needs. A good starting
point to browse for APIs is RapidAPl Hub.

It would be best if you hosted the database and back-end on a local server. Your API
wrapper should query this server to get the data. Make sure users only see
information that is relevant to them. You can use Xampp as a local server. A recycler
view might be better than a simple list view.

Report

It would help if you documented an explanation for your project in a report (for
example, a README of the GitHub repository that you may use to collaborate).
Mention the framework and functionalities so that any third person can understand
what the project implements just by reading through the README.

Bonus

Designing the user interface to appear clean and user-friendly, adding additional
features, adding more service APIs, making the wrapper as robust as possible, etc., all
count as bonuses. We always welcome creativity.


https://rapidapi.com/hub
https://www.apachefriends.org/

