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This paper proposes a new algorithm called Neural Thompson Sampling
(NeuralTS) that uses deep neural networks (DNNs) for both exploration
and exploitation. The posterior distribution that is used for the reward is cen-
tred at the NN approximation, and variance is taken from neural tangent fea-
tures. The algorithm achieves cumulative regret of O(

√
T ) under the as-

sumption that the reward function is bounded. The empirical evaluation on
benchmarks with comparisons to several baselines supports theoretical guaran-
tees.

Stochastic multi-armed bandits have been studied extensively in sequential
decision-making. The contextual bandit is a variant used for recommenda-
tion, advertising, robotic control and healthcare. A trade-off between explo-
ration and exploitation becomes necessary for maximizing the reward. The
base idea of TS is: (1) compute the posterior of each arm being optimal for
the present context (2) sample an arm from this distribution. Though recent
works explore using NNs for contextual bandits, the guarantees on regret for
TS are limited to simple models and under restrictive reward function.

The authors consider contextual K-armed bandit and use the observed K
contextual vectors to minimize the pseudo regret by estimating the unknown
reward using a fully connected NN (FCNN). The algorithm maintains a
Gaussian distribution for each arm’s reward, samples the reward of each arm
from the posterior distribution and then pulls greedily. The posterior is
updated using observed reward and NN output.

The authors assume an unknown reward function h and an R-sub-Gaussian
martingale difference noise sequence for the regret analysis. The theory of Neu-
ral Tangent Kernel (NTK) is crucial in their analysis as it connects DNNs
to kernel methods. They define an effective dimension of the NTK matrix
and show that it can be upper bounded if the contexts are nearly on some
low-dimensional subspace of RKHS space. Under the assumptions that the
NTK matrix is positive definite and that the context has unit norm and
component j is the same as component j + d/2, the regret can be shown to
have O(

√
T ) bound using a set of parameters and restrictions. The experiments

they performed hinted that the NTK theory had some limitations. When T is
unknown, m can be set adaptively by dividing time using powers of 2.

For the proof, they assume that the network width m has some bounds
to control the approximation error. The authors define events for mean and



variance under which the estimated mean reward is similar to the expected
reward. They define saturated arms as those whose standard deviation of
the estimate is smaller than that of the optimal arm, thus obtaining a bound
on the regret of unsaturated arms. The expectation of regret is also bounded
conditioned on the mean event. They use Azuma-Hoeffding inequality to
bound the difference between the true reward of the optimal arm and another
arm conditioned on the mean event. Combining all the intermediate results,
they obtain a theoretical bound on the cumulative regret.

The empirical evaluation is performed on several benchmarks including
adult, covertype, magic telescope, mushroom, shuttle, as well as MNIST, with
comparisons to several algorithms including linear and kernelized TS, linear
and kernelized UCB, BootstrapNN and ϵ-greedy for NNs. According to the
authors, NeuralTS performed among the best in 6 datasets and was signifi-
cantly better than other baselines in 2 of them. NeuralTS also degraded “more
gracefully” than NeuralUCB upon increasing the reward delay.


