R10/Sarthak Mittal /200050129

March 13, 2023

This paper uses a recurrent neural network (RNN) as a controller to
generate a variable-length string that specifies a neural network (NN). Using re-
inforcement learning (RL) with accuracy as the reward, they train the RNN
with policy gradient updates. This method was even able to design good mod-
els from scratch and achieved novel results in image recognition and language
modeling tasks compared to previous state-of-the-art architectures.

Past methods of hyper-parameter optimization were limited to fixed-length
space, while Bayesian optimization methods had lesser flexibility. The neuro-
evolution algorithms are more flexible but not practical for large scale because of
being search-based. There are some connections to inductive programming us-
ing search and machine learning (ML). The controller RNN is auto-regressive
(prediction one at a time conditioned on past), but unlike sequence-to-sequence,
uses a non-differentiable metric (accuracy of child network) and learns di-
rectly from the reward (no supervised bootstrapping), thus incorporating
meta-learning and the idea of using NN and RL to update another NN.

The RNN controller generates the hyper-parameters as a token sequence
(for example, the number of filters and filter/stride dimensions for each layer
in a CNN). By bounding the number of layers, they complete generation and
then record validation accuracy (reward). The parameters 6. are updated
according to the maximization of the expected reward.

The list of tokens predicted by the controller is considered a list of ac-
tions to design an architecture. The expected validation accuracy, represented
by J(6.), is maximized using an approximate version of the REINFORCE
algorithm. To control the variance, they use a baseline function that is an ex-
ponential moving average of past accuracies. While training, parallelism was
achieved using distributed training, asynchronous updates, shared parameters
among controller replicas, and parameter update servers.

The authors used a set-selection type attention to incorporate “skip con-
nections”. To tackle the “compilation failures” (resulting due to incompatible
layers or absence of input/output), they (1) used the image if there was no
input layer (2) concatenated unconnected layer outputs (3) padded smaller
input layers with zeros before concatenation. To account for more types of
layers (pooling, normalization, batch-norm, etc.), they add another step to
predict the layer type.

The computation involved in the generation of recurrent cells is modeled



as a tree of steps where each indexed node is labeled with an aggregator
(addition, multiplication, etc.) and an activation (tanh, sigmoid, etc.). They
added additional variables to represent memory states in LSTM cells.

They ran experiments for convolutional architectures for CIFAR-10 and re-
current cell architecture for Penn Treebank and achieved promising results
when compared with the best human-invented architectures. After conducting
a few “control experiments” they concluded that Neural Architecture Search
(NAS) was relatively robust to search space size (tested using max aggregator
and sin activation), and policy gradient proved to be a better method than ran-
dom search. The RNN cell found using their approach has been incorporated
as NASCell in TensorFlow.



