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Markov Decision Processes (MDPs) are an essential part of artificial
intelligence applications that involve decision-making. Policy Iteration (PI)
is a class of planning algorithms for MDPs, and the variants of it differ in the
way they perform “switching”. This paper gives further insight into obtaining
strong upper bounds on the number of iterations and achieves a significant
improvement over previous results related to lower and upper bounds for Ran-
dom PI (RPI), Howard’s PI (HPI), and shows the tightest yet upper bound for
PIs using a randomized variant of Batch-Switching PI (BSPI).

The MDP framework used for the analysis assumes that the state and ac-
tion space are both finite, and policies are stationary, deterministic, and
Markovian, and P and R are given as tables. The paper describes the PI
method and how variations differ in terms of the “switching rule” they use.
Their results also carry over to solving Acyclic Unique Sink Orientations
(AUSO) problems, and the AUSOs resulting from 2-action MDPs also satisfy
the Holt-Klee conditions due to being linked to linear programs.

In the previous analysis, the tightest upper bound was obtained by bound-
ing the number of policies eliminated in each iteration. The results suggested
an upper bound of O(k™/n) for HPI, and O(((1 4+ 2/logk)(k/2))"™) for RPIL
The recent analysis of BSPI with a batch size of 7 showed an upper bound
of O(k707") The analysis of the RSPI algorithm, which picks an improving
action uniformly at random, results in an upper bound of O((2+In(k—1))").

Upper Bounds: The first result they show is that the sequence of the
sizes of modification sets for each state is unique for a given policy, thus es-
tablishing a bijection from the set of policies to the set of “improvement
sequences”. To improve the upper bound of RPI, they choose the improvable
action uniformly at random, which requires polynomial-time operations. The
derivation of the upper bound follows from first bounding the number of small-
improvement policies, then lower bounding the number of policies skipped,
resulting in an upper bound of O(k"/2H,E"_1)/2). For the upper bound of HPI,
they use a variant in which the improving action is picked uniformly at random.
Following a similar analysis, the upper bound obtained is O((Zk)"/zH,infl)/Q).

The original BSPI algorithm was analyzed using HPI within the batches,
enumerating all possible AUSOs of dimensions up to 4. In this paper, they
use RPI within the batches, and RPI dominates HPI in the expected number



of iterations. The upper bound obtained is @(1.6001™) for 2-action MDPs.

To obtain the lower bound for RPI, they use the presence of dummy states
to eliminate policies, represent policies as bit strings, and the expected number
of policies evaluated by RPI turns out to be at least (n + 1)/2.

In conclusion, they show their results using experiments. In practice, HPI
seems to work better than RPI. They claim the disparity is due to loose bounds
and their choice of MDPs. The analysis also does not explicitly use the prop-
erties of MDPs.



