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Artificial intelligence often requires formulating decision-making problems
using Markov Decision Processes (MDPs). Several algorithms are available
for planning in MDPs, with upper bounds that are polynomial in the size
of MDP representation and the discount factor . This paper provides the
first set of non-trivial upper bounds, that are independent of parameter
representation and -, for the number of iterations of convergence of policy
iteration (PI) in the worst case. They also introduce a Randomized PI that
accepts a single state-state action improvement with probability 0.5.

The MDP framework used is infinite-horizon with a discounted sum of
rewards. They explain how general policy iteration works by changing action
at each state and then deciding which changes to accept to improve the policy
(better in terms of partial ordering over the policies using the value function).
Using a modification set T that contains the (s, a) pairs that could improve the
policy, they define an iteration in terms of two steps: (1) Improvement Selection
(choose a subset U out of the modification set) (2) Policy Improvement (modify
the policy according to the subset). The modification set is “well-defined”
if each state appears only once. They also utilize the crucial fact that each
iteration strictly improves the policy, thus skipping all policies between the
current and new policies in partial ordering.

Their claims show that any subset of states appears at most once in the
case of two-action MDP. The analysis of the “modify” operation (for policy
improvement) shows that if a policy has a well-defined modification set, then
the number of policies skipped by PI would be at least the size of that set.
Using this analysis, they show that the Greedy PI (the subset selection always
selects the whole set) considers at most O(2"/n) policies for a two-action MDP
by splitting the proof into cases on size of modification set.

The Random PI defines the “select” operation as choosing a random subset
uniformly at random, hence accepting each local improvement with probabil-
ity 0.5. With the use of a set of properties related to partial orders and policy
comparison in PI, they prove that the expected number of policies that are
skipped at each iteration i is at least 2/7"'I=1. Considering the random behav-
ior, they derive a probabilistic bound using binary entropy and a notion of
“good” iteration and “typical” run, which says that Random PI considers at
most O(2°78") different policies with probability 1 — 9—2""



To extend results to multi-action MDPs (action space of size k), they assume
that there is a way to reduce a modification set T" that is not well-defined to
a subset L that is. Another important fact is that if there are two policies 7;
and 7; in PI (where ¢ < j) such that U; C U; then the policies cannot be the
same for all s € U;. Due to this, the number of iterations where |L™| < d is
bounded by E?:o (?) K.

These results lead to a bound of at most O(k™/n) different policies for
Greedy PI. For Random PI, the expected number of policies skipped be-

comes at least 2/27'1=1 which gives a bound of at most @ (((1 + 2 ) E) )

logk | 2
different policies with probability 1 — 2~((/2)"),

In concluding remarks, they compare their obtained upper bounds with the
Q(2") lower bound proven for Sequential PI. The few places where their
analysis is lacking are: (1) consideration of additional policies to rule out,
apart from the modification set (2) taking advantage of the modification set
size (3) the large gap between the proven upper bound and the trivially known
lower bound.




