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This paper provides a set of polynomial-time algorithms for determining
a Markov reward that can allow an agent to optimize tasks (finding a set
of behaviors, a partial ordering over behaviors, or over trajectories) or conclude
that such a reward function does not exist. Reward being the main incentive
that drives any reinforcement learning (RL) agent to learn, this paper studies
the reward hypothesis by examining how expressive the reward is.

They study interactions between a designer (thinks of a task) and a learner
(incentivized to learn a task). They focus on finding out whether there are
tasks that cannot be characterized by a Markov reward. They chose Markov
functions because many applications rely on immediate worth, and history-
based rewards have to deal with an additional parameter for the length of the
history. They work with environment-task pairs and determine whether a
Markov reward exists to capture the task in the given environment.

They model the environment as a Controlled Markov Process (CMP),
which is a Markov Decision Process (MDP) without a reward function. They
assume that reward functions are deterministic, and depend only on state,
state-action pairs or state-action-state triplets. They assume that the agent
will maximize value for a particular discount factor γ. They also highlight
the other perspectives of reward in related works. They claim that a suitably
rich description of task could help in distinguishing non-optimal behaviors by
obtaining an ordering over behaviors.

They define a Set Of Acceptable Policies (SOAP) as a non-empty subset
of deterministic policies Π from S to A for a given E. They claim that a reward
function captures a task T in E when the start-state value exactly adheres
to the constraints of T (optimal for all good policies and strictly greater than
other values). They define range-SOAP with the condition that there exists an
ϵ ≥ 0 such that every π ∈ SOAP is ϵ-optimal in start state value.

They define Partial Ordering on Policies (PO) as a partial order of the
deterministic policies Π. They claim that a reward function captures a PO in
E if and only if it produces a start-state value that orders Π according to PO.

They define Partial Ordering on Trajectories (TO) of length N ∈ N as
a PO with each trajectory consisting of N state-action pairs. They claim that a
reward function captures a TO if the ordering as per the cumulative discounted
N -step return from start-state matches the PO.



They claim that there exist (E,T ) for which no Markov reward exists. This
is due to tasks that have policies or trajectories that are correlated in value,
due to which the reward is unable to find a PO that distinguishes them. They
show this via simple 2-state MDPs where the SOAP is a subset of actions chosen
such that PO that distinguishes optimal policies is not possible. They also
show that even if the transition function or γ are taken as part of the reward
specification, it is not sufficient.

They formulate the reward design problem as a linear program that matches
the constraints with the requirement that reward function has infinitely many
outputs. They make use of the “fringe” (set of policies that differ from a pol-
icy in SOAP by exactly one action) to ensure maximality of start-state value
of good policies. They also give a generalization where they can find a re-
ward function that realizes a task in all environments in a finite set with shared
state-action space. However, this is not closed under sets of CMPs.

They conclude with an empirical analysis followed by possible relaxation
of main assumptions - environment may not be a finite CMP, designer may
not know environment precisely, reward may depend on hsitory, designer may
not know how learner manages states - along with the consideration about how
reward impacts the learner’s dynamics, and to assess whether it is capable of
developing cognition attributes.


