
R04/Sarthak Mittal/200050129

January 22, 2023

This paper discusses inverse reinforcement learning (IRL), where the
optimal actions are given and the reward function needs to be found for the
system. They discuss both cases, where the entire policy is given and where
we only have a finite set of trajectories. To handle degeneracy (having set
of reward functions, all of which make the policy optimal), they use a linear
programming formulation to pick a function which best differentiates the op-
timal policy from others. According to the paper, these algorithms could serve
as models for animal and human learning, particularly when multi-attribute
rewards are involved. It could also help in apprenticeship learning, such as
“driving”, where the expert’s policy could be used to generate reward function
for imitation by apprentice.

Their method relies on “Bellman Equations” and “Bellman Optimality” in
Markov Decision Processes (MDPs). They first formulate the finite state
space case, and characterize the reward function using an inequality that is
necessary and sufficient for the optimal policy to be unique. To choose the
reward function from the feasible set, they add constraint to penalize deviation
from optimal and maximize “sum of difference between quality of optimal
action and next-best action”. They added a weight decay-like penalty also,
in order to have simpler (non-zero in a few states) reinforcements.

For the case where the state space is infinite, they assume that the value
function of a policy can be approximated, and formulate a linear approxima-
tion for the reward function. The inequality is replaced by an expectation
maximization, and is applied only over a large finite subset of states.

For the most general case (access to policy through a set of trajectories),
they formulate it as (i) choosing a state distribution D and start state s0 (ii)
maximizing Es0∼D[Vπ(s0)]. The linear approximation for reward carries over.
For estimating the value function, they take an average of empirical return
over m Monte Carlo simulations under the policy. The iterative algorithm
proceeds by first finding value function using the given policy, and then finds
the coefficients for the reward function using linear programming, and then
finds policy that maximizes value function under reward, and continues.

They also bring forth a few questions about potential-based shaping rewards,
noise in measurement of actions (or in its optimality), “locally consistent” re-
wards, “identifiability” and extension to partially observable environments.


