GROW SIMPLEE FINAL REPORT

Team No: 41

February 7, 2023

Route Planning Optimisation

Route Planning: Grow Simplee

11:43

river

h
Reorder

Kawn‘\‘u‘tn

Mildred Richards IvE 6KM EOM

sssssss

Mabel Covell

nnnnnnnn

Contents

1__Introduction| 3
(L1 Contributionsl« . . e 4
[1.2 Report Overview| e 5

|2 Computer Vision (Challenge 1) 6
2.1 Pixel-Area calibrationl o 0L 6

[2.1.1 Approach| 6
RI2 Resultd oot 7
[2.2 3D object Reconstruction| Lo 7
[22.1 Approach| 7
22 Resultd . . . o o o 8
[2.3 Experimental Setup| L o 9

13 The Route Planner (Challenge 2)| 10
BI Distance Mafrixl. o oottt 10
3.2 Initial Route Planner: CVRPlI00 oo o000 12
3.3 CVRP Experiments] 12
3.4 Dynamic Pickups| 13

B.4.1 Closest rider 14
[3.4.2 Least increase in route length| 14
.43 TOP Formulation| 14
[3.4.4 Handling multiple dynamic pickups simultaneously| 15
[3.5 Handling difterent EDDs and scarce resources| 16
[3.6 Smart Bag Creation| 16
[3.6.1 3D Bin Packing Problem|. 16
[3.6.2 Methodology| 16
[3.6.3 Experimental Results| 17

[4 Mobile Application| 17
4.1 Implementations| L 18
M2 Teatured . . . o o o v v o 18

M2T AdmID - - o oo 18
H227Driverl . . . o o 19
4.3 Models used in the Backend| o000 19
4.4 Simulatorl oo 20

5__Conclusion and Future Workl 20

[A_CV Methods| 21
|A.1 Volume Estimation by Monocular Depth Estimation| 21

[A.I.1 Approach| 21
21

B _CVRP Methods 21
IB.1 Linear Programming Formulation|. 21
IB.2 Genetic Algorithm Approach| 23

[B.2.1 Problems faced with GAI. 23
IB.3 Google OR tools| o 23
IB.4 Reinforcement Learning Approaches| 23
IB.4.1 Reinforcement Learning Experiments|. 24

Admin

Status O
— ﬁ N\
Constraints @

Computer Vision

Routing Info

\ 4

.:. Dynamic Request
s
5 v I Routing Info
(BD (0] 000 (o] 000
gr (o] 000 [e] 000
o (o] 000 [e] 000 .
g H ﬁ x H Rider
¥ > (O):
........ --...........) Q\iﬂ
CSV Data
Server
I | t Planner
npu / l, \
Dynamic Initial Smart
Routes Pickups Route Bag

Planner Planner Creation

Figure 1: Architecture of last mile hub delivery system

1 Introduction

This report presents the last mile hub delivery system, which deals with delivering a set of
items from the hub to the customers using the riders available who can deliver a subset of items
(around 20 items) within the given delivery time (around 4-5 hours). It is a very complex
system, and we have used several optimization algorithms at each step. The architecture of
this system can be explained using Figure This system sits on the Server and interacts
with each module as described below.

Computer Vision (Challenge 1) The Computer Vision module is responsible for estimat-
ing the volumetric weight of objects in real time and detecting any erroneous/defective items
based on their dimensions.

Planner (Challenge 2) The Planner is a major module in the last mile hub delivery system
that performs several optimization tasks: First, it uses the Initial Route Planner to
allocate the packages to the riders and find the optimal route for each rider to deliver the
allocated packages. Second, it uses the Smart Bag Planner to place the allotted items
in a rider’s bag in the order of deliveries while minimizing the total space in the bag. The
third optimization task is done by the Dynamic Pickup Planner to deal with the dynamic
pickup request by the users.

Mobile Application The application module facilitates the capability for both the driver
and administrator to access and engage with the data stored in the backend. This includes
the ability to review and modify package information, view locations on a map and display
the status of packages at various points in time.

1.1 Contributions
Here is the summary of our contributions to this problem statement.

Computer Vision

1. Volume Estimation using Pixel-Area calibration: We propose a method for find-
ing volumetric weight of any object in real time with around 90% accuracy, by using
only a single depth camera, hence it’s a cost effective solution as compared to other
Lidar based solutions.

2. Estimating Dimensions using a 3D reconstruction model: We have employed
a 3D reconstruction model that takes 2 or 3 monocular images as input and generates
a 3D Voxelized model of the object in real-time. Then by using convex hull method,
we estimate dimensions from the 3D structure with around 85% accuracy. Due to
extensive experimental analysis done on the 3D reconstruction model, it could work
better in some cases where other Lidar based methods would fail because of lack of
texture or wide baselines.

Distance Matrix Computation

1. We created our own API for distance matrix calculation, saving lots of commercial costs
from 3rd party services.

2. Our algorithm involves a precomputation to be stored in disk, based on distance matrix
generated from clusters. For this purpose, we exhaust all possible transactions available

in Microsoft Bing API.
3. The proposed method is highly scalable in both time and cost.
Planner

1. We formalized Initial Route Planner as the capacitated vehicle routing problem (CVRP).
We used open-source libraries such as Google OR Tools, and implemented other algo-
rithms based on Linear programming, Genetic Algorithms, and Reinforcement Learning
solutions. We have conducted extensive experiments to test these methods on synthetic
data. We found that Google OR Tools is easily scaled and superior to all other solutions
that we have experimented with when considering the time taken by the solution.

We also handled several corner cases like, when the number of vehicles is lesser than
the minimum required to deliver to all points, by identifying which delivery points the
riders should leave. Additionally, we have formulated our optimization problem such
that packages with later EDD are dropped under constraint with higher priority.

2. We formulated Smart Bag Planner as 8D bin packing. Smart bag creation optimizes
the filling of a single rider’s bag so that items are easy to remove, i.e., packages to
be delivered first are on the top, and so that volume constraints are satisfied. We
implemented the 3D Bin Packing Problem using two heuristics, namely, 3D Best Fit
and 3D First Fit Decreasing algorithms (detailed below). We were able to capture the
hierarchy of insertion of packages by assigning each package a weight equal to the index
of its drop location. This also helped us create enough space in the bag to handle
dynamic pick-ups efficiently.

3. We have proposed two solutions to incorporate dynamic pickups into riders’ existing
routes. The first approach returns an optimal allocation of a single package to a rider,
by checking the increase in route length for each rider on allocating the package to that
rider (using a TSP variant), and selecting the rider with the smallest increase in

4

route length. The second approach works with multiple dynamic pickup points,
using Google OR-Tools with additional constraints to allocate pickups to riders such
that the total increase in route length is as minimal as possible.

Mobile Application

1.

1.2

We have implemented several features for the admin: to view and edit the packages and
the drivers assigned, add new pickup points, and simulate the time to view the same
at different timestamps.

. The app uses the flutter framework due to its cross-platform capabilities and extensive

library size. We have created every screen from scratch.

. We created various modules for handling separate tasks, for example, the interactions

with the backend and managing data translation between the frontend and back end.

. We created a separate module for data and state management in the frontend and

models for every entity, e.g. driver, customer, package, and location, each having their
attributes and functions.

. Error handling is also implemented in the application in case of errors like network

failure.

Report Overview

In the rest of the report, we describe each component in this system and the methods we
used to build them. Section 2] discusses volumetric weight calculation using computer vision
techniques. Section [3| describes the Planner that we consider an optimization problem. In
Section [d we demonstrate the working of this system using an App that we developed using
Flutter. Finally, Section [5| concludes this report.

2 Computer Vision (Challenge 1)

The first part of the last-mile hub delivery system involves estimating the volume of objects
and detecting erroneous items based on their dimensions. We performed pixel area calibration
using a depth sensor and used those parameters to find the volumetric weight of objects.
We have also used a machine learning model that generates a voxelized (a voxel is the
3D equivalent of a pixel) reconstruction of the object in 3D. We used this 3D structure to
estimate the dimensions of the object. To find the dead weight of the object we used a
weighing machine and the output was read using Optical Character Recognition.

2.1 Pixel-Area calibration

For volume Estimation using a depth sensor, we performed pixel area calibration using an
OAK-D depth sensor (See fig [2) and used the calibration parameters to find the volume of
objects. We have explained this process in detail in the following section.

Figure 2: OAK-D Depth Camera

2.1.1 Approach

We used a depth sensor to get the depth map of the top view of any object we would have
information about the height of each point on the top of the object from the ground. If we
can somehow find the area covered by the points on top of the object, we could perform an
area integral to find the volume of the object.

40x40 cm

30x30 cm

20x20 cm

Mapping Pixel Area 10x10 cm
to Actual Area

Image from OAK-D

Figure 3: Pixel-Area Calibration

Hence to find the area covered by the points on top of the object we map the pixel area
in the RGB image to the actual area covered by the points on top. We do this by marking
squares of different dimensions (40x40 cm, 30x30 cm, 20x20 cm and 10x10 ¢cm) on a cardboard
sheet (see ﬁgure@ and place the sheet at different heights from the oak-d camera. Then, we

6

https://store.opencv.ai/products/oak-d

detect contours to find the pixel area in the image and map it to the actual area by fitting a

polynomial curve as shown in figure [4]

1e6 40 x 40 cm 30 x 30 cm
121 @ ® data
line
= 600000 1
10
500000 4
g g
o 08 . @
2 k!
& & 400000 4
06
i 300000
04
i 200000 4
T T T T
600 700 800 500
Sensor Height{cm) Sensor Height{cm)
20 x 20 cm 10 x 10 cm
300000 ° o
@ data 70000 & data
275000 - spline - spline
250000 4 50000
225000 4
200000 4 - 50000 L]

Pixel area

175000 q

150000 q

125000 q

100000 q

Pixel area

40000

30000

2.1.2 Results

T T
700 800
Sensor Height{cm}

Figure 4: Curve fitting for pixel-area

Object

Actual Volume
(litres)

Estimated
Volume (litres)

% Accuracy

0.9072

0.996

90.17

1.098

90.2

T T
700 800
Sensor Height{cm)

calibration

Object 1

3 32.275 36.0189 88.4 Object 2 Object 3

Figure 5: Volume Estimation results

The error in measured volume from the Pixel-Area calibration method was around 10%.
One of the reasons is that the least count of depth measured using the OAK-D sensor is
around 9mm. With such accuracy, it’s difficult to get precise results. Hence if we use a more
precise depth sensor, it’s possible to get more accurate results.

2.2 3D object Reconstruction
2.2.1 Approach

In this method, volume is estimated from multi-view 2D images as input. We have imple-
mented a paper on 3D Recurrent Reconstruction Neural Network. . In the pipeline, we
used pre-trained Neural Network architecture to generate a 3D reconstruction of objects in
voxel format from 2D multi-view images captured using 2 monocular cameras. (Figure |§|

|:“> Dimension of
Bounding box

Pyntcloud and Open3d
Python Library

Input Multi-view 3D-R2N2 |:|I>
Images Neural Network

Ve [=

Convex Hull

Figure 6: 3D object Reconstruction pipeline

The network takes in 2 images of an object instance from arbitrary viewpoints and outputs
a reconstruction of the object in the form of a 3D voxelized object.

We also used pre-existing python library, PyntCloud , to generate a convex hull and
estimate the volume in the pipeline. We also used Open3D python library |3| to generate the
nearest bounding box around the object to get the estimate of the dimensions of the object
to recognize erroneous items.

2.2.2 Results

To get an estimate of object dimensions, we calculate a scaling parameter from the known
dimensions of an object and the model output. We then use the scaling constant to find the
dimensions of other objects as shown in figure [7] and

Known object
dimensions | Model Cutput Ratio Mean
(em)
L=18.5 0.506 385
B=9.7 0.2659 36.48 36.84
H=5.3 0.148 35.56

Figure 7: Calculating scaling constant

Actual | Estimated | Actual Estimated | Actual | Estimated Mean %
Object length length breadth breadth height height A
(cm) (cm) (cm) (cm) (cm) (cm) CLUNECY
1 18 20.59 17.6 19.96 17.6 14.86 85.56
2 13.5 15.12 11.2 12.76 6 6.95 86.25

Object 1 Object 2

Figure 8: Dimension estimation results

2.3 Experimental Setup

Our experimental setup consists of 4 white acrylic sheets which provide a suitable background
to detect the object kept inside. At the top, we have placed the OAK-D depth camera which
captures a depth map from the top. We also place 2 monocular cameras which capture an
isometric view of the objects from 2 directions. Figure [shows the setup equipped with an
OAK-D sensor on top and lights for proper illumination.

Figure 9: Setup for Volume Estimation

3 The Route Planner (Challenge 2)

The Planner is a major module in the last mile hub delivery system that performs several
optimization tasks: First, it uses the Initial Route Planner to allocate the packages to the
riders and finds the optimal route for each rider to deliver the allocated packages. Second,
it also uses the Smart Bag Planner to place the allotted items in a rider’s bag in the order
of deliveries while minimizing the total space in the bag. The third optimization task is
done by the Dynamic Pickup Planner to deal with dynamic pickup requests by users. We
formalize the first optimization task as capacitated vehicle routing problem (CVRP). The
second optimization problem as 3D bin packing, and the third task as an extension of CVRP
The following subsections, detail the CVRP problem, present our solutions, and discuss
initial experimental results. In the last subsection, we discuss the second task of dealing with
dynamic pickups.

3.1 Distance Matrix

The distance matrix is one of the crucial data required by our routing algorithm. It stores
pairwise distance between all the points.

Key Challenge: Computation of distance matrix is very expensive and is O(n?). Also,
commercial APIs are very expensive if we want to scale our system to a large number of
delivery points. In the free version, Google API allows computing only 100 distances in 1
API call. Microsoft Bing API allows computing 625 distances and a total of around 125000
transactions per API key. These are insufficient numbers for computing a distance matrix of
say 1000 delivery points, which would require 108 entries.

Solution: We have created our own API for computing distance matrix efficiently for Ban-
galore without additional commercial costs.

The steps are briefly described below:

o We create a road network graph of Bangalore using Open Street Map.
e The graph is now clustered into 1000 clusters.

e A 1000 x 1000 distance matrix of the clusters is now computed and stored in disk using
Bing API, exhausting all the transactions at once.

e When new delivery points are given as input every day, we create their distance matrix
using the precomputed cluster distance matrix along with A* search algorithm on our
road network graph to navigate through the clusters.

Major advantage of the solution: Computing distance matrix this way significantly
reduces the cost as well as calculates distance with high accuracy.

For example consider the distance between 2 points, (12.9120799, 77.5745235) and
(13.0017902, 77.7231486). A trivial solution could be to just use a straight line distance
whichs comes out to be 18 K'm. The actual distance calculated by Google API is 26.1Km.
Hence, the straight line has an error of around 8 K'm, which is very high!

But our solution, approximates it as 26.78 Km, with an error of only 0.18 Km!

Figure 11 and [12]shows the difference in distance calculated between Google API and our
solution.

10

Street Map

1000x1000

Distance
Matrix
Bangalore R;gue:tptlo
Data ing

Cluster
—_—
1000 points

Precomputation

A* Input
search

N points

Final
Approximate

Distance Matrix

Figure 10: Algorithmic flow for distance matrix computation

8 Y i Lashn

provision Store 4

5]

Phonix Marketci

[}

R Hope Farm Bus'stor

T e Bl /
e BN Ssonaniie \
i 23orietndd BASAVANAGARA e
DAY
s - S powsur, Kl
3 B e oo, @ stivoham shiva Temple = 4 i
0)
it 9 I
o | ECERE
: S o
LY R = dneos,

e 11 min
O
o L SR LAYOUT
ainRoad, chi..y“,!mcil.ymn T e
b~ S Vega city Mall Q) Qe e

Kasavanahali

Mullur
el e

Figure 11: Google API- 26.1 Km

11

BANASWADI
i Sri Laks|
s X =) provisiol
Bengg!uru Palace 4
ridods , -
crhedy 5 Phoenix Marki:g% ot
amftegs 200
INDIRANAGAR [
20800
Bengaluru =g Brookefield Mall
WRF
2Boneied N =@
DOMLUR i
Bazh,end
Lalbagh g o pey pr
ot Shivoham Shiva Temple 3 -
Garden 7 B anestE.
o) Anets
BRI l sl
KORAMANGALA €l el
aediborie BELLAND)J&,
$orgt
)
g S HSR'LAYOUT Play Arena
o Cog e esBed
DTF.e90°. ¥

J.P.NAGAR SeatPes

Figure 12: Our Solution- 26.78 Km

3.2 Initial Route Planner: CVRP

CVRP was proposed in |4] as a generalization of the Travelling Salesman Problem (TSP).
CVRP is an NP-hard problem that consists of a central hub H, starting from which we need
to deliver n items, using m riders, where each rider is constrained to deliver a maximum
capacity of C' items, with a maximum travel time of T" hours for each rider.

CVRP is widely studied, and many approaches exist, from exact, heuristics, and meta-
heuristic algorithms to machine learning techniques such as evolutionary algorithms and
learning-based algorithms. We considered some of these techniques to perform our initial
experiments. Google OR tools |5] is an open-source library that has efficient implementations
of most heuristic and meta-heuristic algorithms. We also implemented LP-based solutions [6]
to find the exact solution, and Genetic Algorithms |7| which can scale for higher input sizes.

The challenges of each approach, as well as the implementation details, can be found in
Appendix [B] In the following experimental section, we compare the performance of these
approaches on synthetic test cases.

3.3 CVRP Experiments

For testing our route planning algorithms, we created synthetic data with the following
assumptions.

e Packet sizes: 3 x 3 x 3 cm? to 40 x 40 x 20 cm?
e Bag capacity: 60 x 60 x 100 cm?® or 80 x 80 x 100 cm?

e Average speed of a rider in Bangalore: 20 kmph

All riders have to complete their delivery in 4hrs, ie. max distance a rider travels is 80
Km, assuming average speed

Locations are uniform in a square area of 40 x 40 km?

Method | No. of Riders Total Max route | Runtime
used points used (km) length (km) (sec)
10 2 108.766 62.578 3
LP 20 3 179.361 65.081 1159
50 - - - -
10 2 112.661 68.457 1
20 3 189.488 70.671 40
GA 50 6 343.450 78.254 100
100 13 725.071 75.451 875
500 96 6665.475 79.934 4000
10 2 108.766 62.578 1
20 3 179.361 65.081 1
OR 50 4 291.151 78.476 1
100 6 406.799 79.867 10
500 20 1106.818 79.526 10
1000 36 2117.240 79.922 10

Table 1: Experiment Results

We used three approaches, namely linear programming (LP), genetic algorithm (GA),
and OR-Tools to solve the CVRP over different numbers of locations. Table I shows our
results.

12

N Algorithms for OR Tools
PCA PMA SV CS PCI LCI

10 108.766 | 108.766 - 108.766 | 108.766 | 108.766
20 179.361 | 179.361 - 179.361 | 179.361 | 179.361
50 291.151 291.151 - 277.900 | 277.900 | 277.900
100 | 400.470 400.470 401.372 394.187 398.294 | 393.027
500 1041.05 1063.06 1096.32 1114.55 | 1040.97 | 1099.08
1000 | 1862.89 | 1804.05 | 1977.96 1884.90 1828.70 2189.71

Table 2: Comparison of different heuristic algorithms

LP was performed with the cvzpy library in Python. While it generated optimal solutions,
it was found to take practically unreasonable amounts of time for more than 20 deliveries.
The large number of constraints involved causes the time complexity of LP to explode. One
possible workaround may be to perform clustering on the dataset and reduce the problem to
smaller LP instances.

GA produces close to optimal solutions up to about 20 deliveries but does not perform well
on larger datasets. The run-time could be optimized by introducing parallelism via threads.
The number of riders shoots up because of capacity constraints, and a better formulation
of constraints may bring it down. The total distance could also be improved by adding
clustering/locality logic to the objective function.

OR-Tools, having various heuristic solutions at its disposal, clearly outperforms the other
two approaches in very less running time. It generates optimal routes for up to 20 deliveries
and reaches close to optimality for more points. Fig. 5 displays the routes produced by
OR-Tools for a set of 100 uniformly sampled points. We further tested OR-Tools on the test
data provided for Bangalore, and we obtained the routes shown in Fig. 6.

As OR-Tools performed the best, we further explored various heuristics available within
OR-Tools and compared their performance, as shown in Table II.

We find that LCI (Local Cheapest Insertion) outperforms other algorithms for prob-
lems of size less than 100, and PCI (Parallel Cheapest Insertion) seems to work better
on average over problems of all sizes.

20000 4

15000

10000 4

5000

0

—5000 -

—10000 +

—15000 4

—20000 +

T T T T T T T T T
—20000 —15000-10000 —5000 0 5000 10000 15000 20000

Figure 13: OR-tools route planning output for 100 uniform points

3.4 Dynamic Pickups
We had thought of two approaches, elaborated below.

13

77.75 4

77.70 4

77.65 q

77.60

77.55 4

77501, T T T T T T
12.88 12.90 12.92 12.94 12.96 12.98 13.00

Figure 14: OR-tools route output for actual Bangalore test data for 170 customers, Total
Distance travelled: 158.869 Km, Total Vehicles used: 6

3.4.1 Closest rider

When a new pickup location is received, we find the rider currently positioned closest to it,
and assign the pickup to that rider. If the remaining bag capacity of this rider is insufficient
for the pickup, we assign it to the next nearest rider, and so on. Once the pickup is assigned,
we use a TSP solver to recalculate the rider’s route.

3.4.2 Least increase in route length

We calculate each rider’s new route length if this pickup were to be assigned to him, using
a TSP solver, and we select the rider having the least increase in route length. If the bag
capacity (at the time of pickup) for this rider is insufficient, we assign it to the rider with the
next least increase in route length, and so on.

We expect the second approach to generate more optimal routes since it directly relates
to the objective while the first approach will produce results faster.

3.4.3 TSP Formulation

We now describe our formulation for the second approach from above.
Since there are many existing efficient TSP solvers, we cast this into a TSP problem.
For each rider, we do the following;:

e Let n — 1 be the number of nodes to which the rider has yet to deliver. WLOG, let
node 0 be the hub. Let the n'® node be the pickup node.

e We add a fake node numbered n+ 1 which is connected to both the hub and the current
node which is the starting point. This node has only 2 edges both of weight 0 connected
to the hub and the current node.

e This fake node is used to ensure that the tour is a complete cycle. Because this node
is only connected to the hub and the current node, and the rider has to come to and
exit from this node, the TSP solution can contain only two possibilities: hub — fake
— current _node or hub <« fake < current node. If the second case occurs, we can
reverse all edges to get a cycle starting at the current node and ending at the hub.

e Since the weights of both edges connected to this fake node are of weight 0, visiting this
node does not extend the cycle length but only ensures that the tour is indeed a cycle
which satisfies that the first node is the current node and the last node is the hub.

14

e To ensure that the volume constraints are satisfied, we first travel along the original
route until there is sufficient space in the bag for the pickup item. The pickup point is
then only connected to those items along the original route where the bag has sufficient
space.

(a) Original Graph (b) Casting Into TSP

Figure 15: TSP Formulation

This method is used to handle adding a single new pickup point, as illustrated in Figure
Adding multiple pickup points can be handled by iteratively calling this method.

Before allocating dynamic pickup After allocating dynamic pickup

e
5000 5000 A

04 04

—5000 —5000 A

—10000 —10000

—15000 —15000

—20000 —20000

*15‘000 *1(]‘000 *5600 6 5DIC|0 lﬂéOO lSC‘IUO 20600 *15‘000 *10‘000 *5(‘)00 6 5060 10600 15600 20000
(a) Before allocating pickup (b) After allocating pickup

Figure 16: An illustration of dynamic pickup allocation for a single package. The green node
shows the pickup location. Pink nodes are already visited at the time of allocation.

3.4.4 Handling multiple dynamic pickups simultaneously

The TSP formulation above clearly gives an optimal solution for a single dynamic pickup
point, but it is not a very good approach for handling multiple pickups. There may be
scenarios where pickup points that showed up earlier may need to be reallocated. This
is possible if the assigned rider is not currently on his/her way to a pickup location, and
some kind of reallocation of pickups gives a more optimal routing solution than the previous
iterative approach.

For this, we used Google OR-Tools. We added constraints in OR-Tools to ensure that
the delivery items allocated to the original driver remain allocated to that driver (OR-Tools

15

has constraints to allow pre-allocation of some locations to fixed riders). Similarly, as before,
we introduce multiple fake nodes — one for each rider who is not currently positioned at the
hub — and each fake node is connected to both the hub and the rider’s current position with
a distance of 0 from both. The fake node has distance oo from all other nodes to ensure
it is not accessible from them. Further, we ensure that capacity constraints on riders’ bags
are not violated by assigning the volumes of packages at the pickup nodes. Finally, we run
the ordinary CVRP solution within OR-Tools on the above setup. The pickup points get
allocated to riders so as to minimize the total distance travelled.

3.5 Handling different EDDs and scarce resources

We handle EDDs of different delivery packets such that, the earlier EDDs are given higher
priority while leaving out delivery points. We introduce an additional penalty factor given
to nodes based on their EDD. Later EDDs are given lower penalties due to lower priority.

N N
Objective =Y d(xs,x;) + A Y _(EDDpag(2;) — EDD(;) + 1)
ij=1 i=1
A =0.5 %« SUM(DistanceM atriz)

3.6 Smart Bag Creation

Smart Bag Creation aims to optimize the filling of packages in the rider’s bag according to
the planned delivery route. The bag should be filled while considering the volume constraints
of the packages and the bag. The order in which packages are inserted into the bag should be
conducive to easy removal during the delivery route, i.e. packages to be delivered at locations
in the first few stops in the route should be at the top of the bag. We will show that this
problem is an extension of the 3D Bin Packing Problem - an NP-Hard problem which is
well-researched in literature.

3.6.1 3D Bin Packing Problem

The 3D Bin Packing Problem involves a collection of n items, each with a given volume, that
must be packed into a container of a given volume larger than the total volume of the items.
We assume that each item P; has rectangular dimensions w;, h;, d; and must be filled into a
container B with dimensions W, H, D. Then, the constraints can be formulated as follows.

n

i=1
In addition to this, we attempt to capture the hierarchy of insertion of packages by giving
each package a weight k;. We have used the implementation described in [§] and modified it
to suit our purposes. This solution attempts to maximise the free space available in the bag,
in order to accommodate extra packages dynamically picked up.

3.6.2 Methodology

This solution uses two heuristic algorithms for 3D Bin Packing as described below.

3D Best Fit At every iteration, this algorithm selects a pivot point where the back lower
left corner of the next package will be placed. If the package does not fit, it is rotated to try
out each of the 6 possible configurations. If none of the configurations fit, the package is sent
to the end of the queue of packages.

16

3D First Fit Decreasing In this algorithm, each package is rotated such that its longest
side matches the packing direction. The packages are then sorted in decreasing order accord-
ing to the longest side and inserted into the bin. If an item does not fit, it is rotated so the
second longest side matches the packing direction, and so on.

The solution gives the option to layer the packages according to weight, with the heavi-
est packages placed below. We use this feature to layer the packages according to how soon
their drop location is in the route. We do this by assigning each package a weight equal to
the index of its drop location.

3.6.3 Experimental Results

We can see below two cuboidal bags, one of dimensions 60 x 60 x 100 and the other of
dimensions 80 x 80 x 100. The items have been packed efficiently to minimize volume wastage.
The rider will choose the 60 x 60 x 100 bag.

Note: We start by packing items with a higher weight (later drop location) first so that they
are below. Thus, the lower weight items (earlier drop locations) are easily reachable.

120

Figure 17: Bag dimensions: 60 x 60 x 100 Figure 18: Bag dimensions: 80 x 80 x 100

When we increase the number of items or their size, it can be seen that they fit only in
the 80*80*100 bag, not 60*60*100

4 Mobile Application

We have given a mobile application base to our server. Our application consists of two
sections - the admin and the rider’s sections. The admin section allows the admin to see the
status and progress of all the riders, their location and remaining deliveries. The admin can
also edit and reorder the packages and their data. We have added the feature for adding
any dynamic pickup request or any manual addition of the package from the admin side.
In the end, we have a timing simulator where the admin can see an expected simulation of
the drivers. In the rider’ section, He/She can view the location and route from the included
map’s screen. The rider’s section allows him to see all the packages assigned to him and their
details.

17

100

Figure 20: Bag dimensions: 80 x 80 x 100

Figure 19: Bag dimensions: 60 x 60 x 100

4.1 Implementations

We have built a cross-platform application using the Flutter framework. It provides rele-
vant features to the admin and drivers. The backend is built using the Django framework.
The front end of the application interacts with the backend using REST API. The backend
fetches dispatch and pickup addresses and customer details from a csv file, finds the locations’
geocodes, and serializes and stores them in a database. We have used Google Maps Geocode
API to get the geocodes of the addresses provided in the csv file. When requested by the
application (admin’s side), the backend runs the routing algorithm, assigns and stores the
data in the database, and returns the output to the frontend. All the requests, e.g. adding
16 pickup points, editing and reordering packages and simulating time, are handled by REST
API calls. Tools Used

e Flutter - provides cross-platform capabilities
e Google Maps, OpenRoutingService and MapMyIndia

e Django for the backend due to its built-in security features and scalability

4.2 Features
4.2.1 Admin

e Deliveries List The list of drivers is shown on the home page of the admin section. A
single item displays the Driver Name, Driver ID, total packages assigned to the driver,
the remaining capacity of the driver’s bag, the percentage of deliveries completed by
the driver, the address of the next delivery location and the estimated time to reach it.

e Driver Details Admin is navigated to this page when he taps an item from the drivers’
list. This screen shows details of the driver, like name and driver id, along with the
delivery locations in the form of a timeline. A single timeline element contains the
customer details and the estimated time to reach the location. Tapping a single tile
shows the package details. It also has the option to view all these locations on a map.

e Package Details This screen shows the details of the package, its customer and the
driver to which it is assigned. It shows details like Order ID, SKU ID, delivery status,
EDD, volume, weight, customer name and address and the option to edit the package
details.

18

e Time Simulation This feature allows the admin to fast forward or reset the time to
see the details of riders and the packages at a different timestamp. The admin can
enter the time to fast-forward in a dialogue box. It updates the delivery status of the
packages and riders’ locations according to the time.

e Edit Package Details This page allows the admin to edit the details of a particular
package. For example, he can make corrections in the address or customer name.

4.2.2 Driver

e Login The driver needs to enter his driver id in order to log in to the app.

e Delivery List The home page shows the list of the deliveries assigned to the driver.
It contains two tabs, Pending and Completed, which show the list of pending and
completed deliveries, respectively. A delivery tile shows the customer name and address,
the order id, the estimated time to reach (in minutes), the delivery status and the option
to view it on a map.

o Package Details This page shows the next location of the driver on a map and the
route to the location from the driver’s last location. It also shows the details of the
package and customer and has the option to view the route directions to the location
in external apps such as Apple or Google Maps.

4.3 Models used in the Backend

We have implemented the following models in our server to handle the database.

e Location - It contains the latitude, longitude as well as the string addresses are given
in the database

latitude - decimal variable

— longitude - decimal variable
— address - string address

— area - string cluster location
e Object - It is a generalised object for the package

— obj_id - Char variable (example - SKU 1)
— qr_code - Char variable
— volume - Integer variable (this data comes from the volume estimation part in
em?)
e User - Stores the data for the customer

— name - Char variable (Name of the user)
— location - referenced to Location
e Package - This table contains the data for the packages, both for packages that needed
to be picked up and the ones expected to be delivered
— pid - Integer variable, stores the AWB number

— object - references the object in that package

— driver_assigned - references to the driver, who has been assigned this package

user - references to the user whose package is being delivered

19

3

volume - integer value, the volume of package in cm
— ETA - integer value, estimated time of delivery
EDD - Expected Date of Delivery

EPT - Expected pickup time, only for packages to be picked up

— status - Current status of the package, with various states like Delivery Pending,
Delivery done, Pickup pending, etc.

e Driver - This table contains data related to the driver

driver id - Char field, contains the unique id of the driver

— last_location - references to Location object, the location of the last package
delivered by the driver

— next_ location - references to Location object, the location of the next package to
be delivered

— packages - list of packages to be delivered
— bag status - the total occupied volume of the driver’s bag

— on_duty - Boolean variable, signifies whether the driver has been assigned any
package

— return_time - Integer field, signifies when the driver will return back to the hub

We have connected our database with our frontend using REST APIs in Django. For all
the queries in the frontend, we have used the features provided by the REST framework and
Django filters to optimise our interaction with the database.

4.4 Simulator

We have made a script in python to simulate our application. In this simulator, the first part
is to fill the database with the package list using the csv. For volume estimation, we can use
the algorithms mentioned in the CV part. Once the database is filled, we have a timer object
in our database, not shown above, only used for simulation purposes. We set the timer to
zero. From the frontend, the admin can simulate the timer variable. Whenever the request
comes, the server will go through each driver to update its state. The server will also look
for all the pickup package request that arrived in that time interval.

For example, the timer starts at 9 AM in the morning with time being 0. Let’s call this
state Sy. Let say the admin increased the time by 45 min, and the app is in some state 57,
here we are defining state with respect to the position of the drivers and the packages that
has been delivered and picked up. Then in this interval of 0 to 45 minutes, the server will
run through the packages to find out which packages were expected to be delivered (ETA)
in that particular time period. And change the driver’s current state to a new location. For
the pickup packages, let say there was a request for pickup at the 44th minute, then it would
have been handled at the 45th minute of simulation and will be allocated to some driver
using the dynamic route planner program. Let say, the pickup is expected to be picked up
at the 96th minute, Now, let say in the interval 45 - 75 minutes, there were two new pickups.
Now, during the processing in the 75th minute, the server will handle the request for all the
three packages as the first pickup package has not yet been picked up.

5 Conclusion and Future Work

We have built a system for the last mile hub delivery system that consist of several features.
Essentially we worked on three major modules, each of which needed several optimizations.

20

For the CV part, we have tested the three approaches mentioned above for generating depth
maps. We worked on methods for generating point cloud data and estimating volume from
it. For the optimization part, we tested four approaches - LP-based, Genetic Algorithms,
Google OR tools, and Reinforcement Learning technique. We have tested these algorithms
using several synthetic test cases. Google’s OR-Tools look promising to scale even for 1000
inputs. Also we have built an App that features several functions.

Appendix A CV Methods

A.1 Volume Estimation by Monocular Depth Estimation
A.1.1 Approach

In this approach, volume is estimated from a single view 2D image as input by generating
a depth image of the image. In the pipeline, the point cloud is generated from the depth
image from a U-net-style neural network trained end-to-end with pairs of RGB and Depth
images. The volume is then calculated using pre-existing python libraries by generating a
convex hull.

Input Image Depth Map

. Point Cloud
Depth Projection Scene Point__ | Volume
Estimation Cloud Estimation
\) C %
Camera Intrinsic
Matrix
Segmentation Mask ko
Segmentation using . 0 6 1
OpenCV

’ .
r @

Figure 21: Monocular Depth Estimation

A.1.2 Results

The Depth maps created from this approach were visually good however, the point cloud
generated from those depth images was not useful. The estimated volume was always in the
order 1075. Due to this we had to discontinue that approach.

Monocular Depth 7
Estimator network

\
Depth Map Point Cloud

Figure 22: Point cloud generation

Appendix B CVRP Methods

B.1 Linear Programming Formulation

Using a similar LP approach as proposed for TSP in |]§[|, we model this problem with the
21

following objective and constraints. Consider the following notation:
e x;;, — 1if rider r’s tour goes from ¢ to j, else 0
e c;; — distance between locations ¢ and j
e v; — volume of package to be delivered at location 7
e y,. — capacity of bag carried by rider r

Objective We have locations 0 to n, with 0 being the hub, and riders 1 to m. Given ¢; j, v;,
yr, we wish to find z; ;, that minimizes

m n n
DD D CiTisr
r=1i=0 j=0
Constraints
e There are no self-loops in the graph of locations, i.e., z;;,» = 0 foreach i = 0,1,2,...,n
and r=1,2,...,m.
e At each delivery location, exactly one rider arrives and departs. For j = 1,2,...,n:
Dot D0 Tijir = Dyt Do Ty = 1
e The same rider who arrived should depart. For eachc=1,2,...,nandr =1,2,...,m.

Zogign Li,cr = Zogjgn Leyg,r

e At most m riders arrive at and depart from the hub. 1 <> S a0, => 7 2?21 Tojr <
m
e For each rider r =1,2,...,m:

— r can arrive and depart at the hub at most once. > 1" | 0, = Z?:l zor <1

— The total volume of packages to be delivered by r should be at the most the
. 9 n n
capacity of r’s bag. > ;"> 0 vi%ij, < Yr
— r’s tour, if it exists, must include the hub. (n+1) 37" o, > 3311 D7) @i

— r can travel at most d distance in his tour. 37" (>0 ¢i @i < d

With these constraints, the LP solution may still contain isolated ‘local’ tours. This can
be fixed in two ways — subtour elimination or timing constraints. Empirically, we found
that subtour elimination performs better. Let S, denote the set of locations for rider r,
where these locations do not form a connected tour. Then, we add the following constraint.
Dot DS, s, Tigw = 1.

Observations Integer linear programming cannot handle a large number of packages, ren-
dering it unfit for practical use.

Pros There are many existing integer programming libraries. We simply plug in the con-
straints and data to get a solution.

Cons In general, integer programming problems are NP-hard and can take exponential time
to solve.

22

B.2 Genetic Algorithm Approach

This approach, proposed by [7] presents a hybrid genetic algorithm combined with a lo-
cal search procedure that can outperform most tabu search heuristics. We can convert a
particular instance into an optimal CVRP solution using a splitting procedure. Thus this
algorithm is flexible and relatively simple. The reference also mentions that efficient GAs
exists for a simpler version (TSP) and an extended version (VRPTW).

The constraints that the approach considers are (i) no demand exceeds capacity (to
ensure a feasible solution exists) (ii) each rider can return back to the hub (round trip for
deliveries) (iii) no rider takes more than 30 deliveries (to ensure load distribution). Along
with this, the objective that we consider is an appropriately aggregated combination of
(i) minimizing the total cost of the trip (travelling) (ii) minimizing maximum trip length
(longer routes) (iii) minimizing number of riders required (choosing most efficiently). We
found that the optimization and the local search absorb 95% of CPU time. So, we decided
to add parallelism to the computation using multi-threading. Our main goal is to speed up
the local search and design a suitable objective function that gives a better guarantee of the
solution being close to optimality.

B.2.1 Problems faced with GA

Genetic algorithms(GA) are not guaranteed to provide an optimal solution or even solutions
close to the optimal solution. Sub-optimal CVRP solutions (even slightly off from the optimal
solution) result in significantly higher costs and lower efficiency, the effects of which increase
with problem size. The inherent stochastic nature of GA requires a large initial population
to ensure that the algorithm can model the solution’s variations and converge towards the
optimal solution. In CVRP, as the problem size increases, the variation in possible routings
increases in the order of factorials requiring a considerable population to account for the
variations significantly affecting the scaling of the algorithm. Overall the GA was a good
enough solution but unable to scale for more large problem instances.

B.3 Google OR tools

Google OR Tools is a collection of open-source software libraries compatible with Python
programming language for solving various optimization problems, including the CVRP. OR-
Tools has various heuristics and meta-heuristics for routing problems. We focus on two
parameters: first solution strategy and local search.

For the first solution strategy, the following gives promising results: Path Cheapest
Arc (PCA), Path Most-constrained Arc (PMA), Savings (SV), Christofides (CS), Par-
allel Cheapest Insertion (PCI), Local Cheapest Insertion (LCI). And, for the local search,
we fix the guided local search that was shown to be the most efficient meta-heuristic for the
CVRP.

Pros: The main advantage of using Google OR tools over other custom handcrafted ap-
proaches is its run time efficiency and ease of use. It can generate approximate solutions for
1000 points in as fast as 10 seconds.

While it may not always provide the optimal solution, it almost always produces approx-

imate solutions that are close enough to optimal for practical use cases.

B.4 Reinforcement Learning Approaches

We have reviewed the literature for three approaches that have attempted to solve the CVRP
using RL.

23

Handling traffic changes using Robust Optimization [9] addresses the CVRP and
Traveling Salesman Problem (TSP) using a robust optimization approach, thus accounting for
uncertainty present in data, specifically uncertainty about distances between delivery points
or nodes.

Pros Robust optimization provides performance guarantees despite frequent environment
changes, such as changing traffic conditions. The RL agent is provided with a new problem
instance in each episode, and thus learns strategies to generate good solutions for an entire
class of instances, and once training is complete even new instances can be solved instantly.
Algorithm The problem is formalised as

glea;gznellrfl f(y7 T, U) - r;lea;'(f(y7 Ly U)
where known parameters x, an uncertainty set U, and the solution space Y are given as
input, and the value of the solution f is considered to be fixed. The "robust objective" f
determines the minimum value of solution y that can be guaranteed regardless of unknown
parameter vector u, and the objective is to maximize this guaranteed value.

RL agents are trained for maximization of the above equation, and each action of the agent is
a step to construct the solution. The state space S consists of states s which represent both
the given problem instance and the solution constructed so far. The action set A represents
solution construction steps such as addition, deletion, and swapping of nodes. Pairwise node
distances, representing distances between delivery locations, are uncertain and parameterized
by deviation rate a and deviation factor 3.

End-to-end framework for VRP [10]| develops a framework for solving various VRP
problems in which the optimal solution is viewed as a sequence of decisions, thus obtaining
near-optimal solutions by increasing the probability of desirable sequences being encoded.
Pros Once the model is trained, it can be used several times without re-training, for any
problem generated from the training distribution. The method is computationally superior
& scalable.

Timing windows using roll-outs |[11] offers an approach to the CVRP. This approach
allows the user to tune solution quality at the cost of computation time while being general-
isable to other problems. Here, the feasibility of a vehicle to serve a customer in time is given
a value using Reinforcement Learning. The vehicle-customer pairs with the top k values are
identified. Rollouts are carried out on these pairs using a pre-trained policy. The route with
the lowest total distance is identified and optimised in two steps using satisfiability solvers.
Pros Offers an RL solution to CVRP with comparable solution quality and computation
times to other heuristic and meta-heuristic-based solutions.

B.4.1 Reinforcement Learning Experiments

Below we show one batch of results obtained by the model described in [10] (as reproduced
by us after training it partially on some random instances) for 10 input points.
We give some details about the development and training environment.

Algorithm: We first set up encoder (1D convolution), attention (combination of tanh
and softmax) and pointer (GRU combined with dropout) layers. The actor is a deep RL
model having both a static and dynamic encoder, which produces tour indices along with the
likelihood of it being on the tour(s) (negative log). The critic analyses the complexity based
on the log probabilities.

24

1.00

0.751
0.501
0.251

0.00
1.00

0.751
0.50 1
0.251
0.00

1.00
0.751
0.50 1

0.25 A

0.00 T T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure 23: RL experiment results (10 delivery points)

Dataset: The assumptions used when creating the data are (1) Each city has a demand
in [1,9], which must be serviced by the vehicle (2) Each vehicle has a capacity (depends on
the problem), and must visit all cities on tour (3) When the vehicle load is 0, it must return
to the depot to refill. The static set is the set of locations of the points, and the dynamic set
is the set of (load, demand) pairs for drivers and the points respectively.

Hyperparameters: The hyperparameters include (1) maximum load for a vehicle (2)
maximum demand (3) Actor and Critic learning rates (4) Batch size (5) Hidden and Dropout
size (6) Number of layers and Randomizer seed (7) Train and validation size.

Training: The updates handle valid and invalid states, and the dynamic updates handle
whether the driver is able to satisfy maximum demand in a city visit (tour) before returning
to the depot. The reward given also considers the Euclidean distance covered by the driver.
The training proceeds as (1) actor forward pass (2) reward accumulation (3) critic estimation
(4) computing losses (5) backpropagation of actor and critic.

References

[1] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-
r2n2: A unified approach for single and multi-view 3d object reconstruction. In Computer
Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October
11-14, 2016, Proceedings, Part VIII 14, pages 628—644. Springer, 2016.

[2] https://pyntcloud.readthedocs.io/..
[3] http://www.open3d.org/,.

[4] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Manage. Sci., 6:80-91,
1959.

[5] Laurent Perron and Vincent Furnon. Or-tools.

[6] G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a large-scale traveling-
salesman problem. Operations Research, 2:393-410, 1954.

[7] Christian Prins. A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers & Operations Research, 31:1985-2002, 2004.

25

https://pyntcloud.readthedocs.io/
http://www.open3d.org/

[8] Erick Dube, Leon Kanavathy, Leon K@i, and Owave Za. Optimizing three-dimensional
bin packing through simulation. 01 2006.

[9] Tobias Jacobs, Francesco Alesiani, and Gulcin Ermis. Reinforcement learning for route
optimization with robustness guarantees. pages 2592-2598, 2021.

[10] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, and Martin Taka¢. Re-
inforcement learning for solving the vehicle routing problem, neurips, 2018.

[11] Harshad Khadilkar. Solving the capacitated vehicle routing problem with timing win-
dows using rollouts and max-sat, 2022.

26

	Introduction
	Contributions
	Report Overview

	Computer Vision (Challenge 1)
	Pixel-Area calibration
	Approach
	Results

	3D object Reconstruction
	Approach
	Results

	Experimental Setup

	The Route Planner (Challenge 2)
	Distance Matrix
	Initial Route Planner: CVRP
	CVRP Experiments
	Dynamic Pickups
	Closest rider
	Least increase in route length
	TSP Formulation
	Handling multiple dynamic pickups simultaneously

	Handling different EDDs and scarce resources
	Smart Bag Creation
	3D Bin Packing Problem
	Methodology
	Experimental Results

	Mobile Application
	Implementations
	Features
	Admin
	Driver

	Models used in the Backend
	Simulator

	Conclusion and Future Work
	CV Methods
	Volume Estimation by Monocular Depth Estimation
	Approach
	Results

	CVRP Methods
	Linear Programming Formulation
	Genetic Algorithm Approach
	Problems faced with GA

	Google OR tools
	Reinforcement Learning Approaches
	Reinforcement Learning Experiments

